Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a protocol for the generation and functional verification of hypoxia-sensitive chimeric antigen receptor (CAR)-T cells. This protocol presents the lentivirus-based generation of hypoxia-sensitive CAR-T cells and their characterization, including the validation of hypoxia-dependent CAR expression and selective cytotoxicity.

Abstract

Extensive studies have proven the promise of chimeric antigen receptor T (CAR-T) cell therapy in treating hematological malignancies. However, treating solid tumors remains challenging, as exemplified by the safety concerns that arise when CAR-T cells attack normal cells expressing the target antigens. Researchers have explored various approaches to enhance the tumor selectivity of CAR-T cell therapy. One representative strategy along this line is the construction of hypoxia-sensitive CAR-T cells, which are designed by fusing an oxygen-dependent degradation domain to the CAR moiety and are strategized to attain high CAR expression only in a hypoxic environment-the tumor microenvironment (TME). This paper presents a protocol for the generation of such CAR-T cells and their functional characterization, including methods to analyze the changes in CAR expression and killing capacity in response to different oxygen levels established by a mobile incubator chamber. The constructed CAR-T cells are anticipated to demonstrate CAR expression and cytotoxicity in an oxygen-sensitive manner, thus supporting their capability to distinguish between hypoxic TME and normoxic normal tissues for selective activation.

Introduction

Chimeric antigen receptor T cell (CAR-T) therapy has represented a significant breakthrough in cancer treatment. Since the Food and Drug Administration (FDA) approved the first CAR-T therapy for treating advanced/resistant lymphoma and acute lymphoblastic leukemia in 20171,2,3, 10 CAR-T therapies targeting CD19 or B-cell maturation antigen (BCMA) have received approval globally4. However, despite extensive research, replicating the remarkable efficacy of CAR-T therapy in treating hematological malignancies remains challenging for ....

Protocol

In this study, HER2-BBz-ODD, a hypoxia-sensitive CAR targeting HER2 (Gene ID: 2064) was compared with its regular counterpart, HER2-BBz. The schematics of the two CARs are illustrated in Figure 1A, which shows that HER2-BBz-ODD is derived from HER2-BBz by adding the ODD sequence to the C-terminal of CD3ξ. The construction of lentiviral vectors expressing the two CARs and the generation of the corresponding lentivirus by 293T cell transfection has been previously described

Representative Results

Fusing the ODD domain of HIF-1α to the CAR moiety represents a primary strategy for generating a hypoxia-sensitive CAR. The hypoxia-sensitive HER2-targeting CAR analyzed in this study, named HER2-BBz-ODD, was constructed using this strategy by integrating the ODD sequence into its conventional HER2-BBz (Figure 1A). In this study, we used lentiviral transduction to express HER2-BBz-ODD CAR or HER2-BBz CAR and subsequently examined their oxygen sensitivity in two cell types: human PBMCs a.......

Discussion

Safety concerns are significant issues that must be addressed for any CAR-T cell therapy to advance to clinical use. Utilizing the unique properties of tumor cells or the TME has become a primary research direction focusing on the development of CAR-T cells that target tumor tissues selectively. Designing a hypoxia-sensitive CAR-T is an attractive strategy in this direction, with several approaches being explored, including the one presented in this study-fusing the CAR moiety with the naturally occurring hypoxia-sensing.......

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2016YFC1303402), the National Megaproject on Key Infectious Diseases (2017ZX10202102, 2017ZX10304402-002-007), and the General Program of Shanghai Municipal Health Commission (201740194).

....

Materials

NameCompanyCatalog NumberComments
1.5 mL Centrifuge tubeQSP509-GRD-QSupernatants and cells cellection
Protocol Step 2,3,4
10% ExpressCast PAGENCM biotechP2012Immunoblotting
Protocol Step 3
10x PBSNCM biotech20220812Cell culture
Protocol Step 4
10 mL pipetteYueyibioYB-25HPipetting
Protocol Step 1
10xTRIS-Glycine-SDS electrophoresis bufferEpizyme3673020Immunoblotting
Protocol Step 3
15 mL Centrifuge tubeThermo Scientific339650Supernatants and cells cellection
Protocol Step 1
25 cm2 EasYFlaskThermo Scientific156367Cell culture
Protocol Step 3,4
4x Protein SDS PAGE Loading BufferTakara9173Immunoblotting
Protocol Step 3
6-well flat-bottom tissue culture platesThermo Scientific140675T Cells culture
Protocol Step 1
96-well black flat-bottom tissue culture platesGreiner655090Cytotoxicity assay
Protocol Step 4
96-well ELISA platesCorning3590ELISA
Protocol Step 5
96-well plate shakerQILINBEIERMH-2Shake
Protocol Step 4
96-well U-bottom tissue culture platesThermo Scientific268200Supernatants cellection
Protocol Step 4,5
anti-FLAG antibodySigmaF1804-50UGImmunoblotting
Protocol Step 3
CarbinolSinopharm10010061Immunoblotting
Protocol Step 3
Carbon dioxide incubatorThermo Scientific360Cell culture
Protocol Step 1,2,3,4
Cell counting plateHausser scientific1492Cell counting
Protocol Step 1,3,4
CELLection Pan Mouse IgG KitThermo Scientific11531DMouse IgG magnetic beads
Protocol Step 1
CentrifugeThermo Scientific75002432Cell culture
Protocol Step 1,3,4
Chemiluminescence gel imaging systemBIO-RAD12003154Immunoblotting
Protocol Step 3
Cobalt chloride solution (0.5 M)bioleaperBR4000203Hypoxic condition
Protocol Step 2,3,4
DMEMCorning10-103-CVCell culture
Protocol Step 4
Electronic balanceSartoriusPRACTUM612-1CNweigh
Protocol Step 5
FBSBI04-001-1ACSCell culture
Protocol Step 3,4
GAPDH Mouse mAbABclonalAC002Immunoblotting
Protocol Step 3
Gel electrophoresis apparatusBIO-RAD1645070Immunoblotting
Protocol Step 3
GloMax Microplate ReadersPromegaGM3000luciferase activity measurement
Protocol Step 4
Goat anti-Mouse IgG (H+L)YeasenP1126151Immunoblotting
Protocol Step 3
High speed microfreezing centrifugeeppendorf5810 RCell culture
Protocol Step 1
Human IFN-γ ELISA SetBD555142ELISA
Protocol Step 5
Items: Recombinant Human IFN-γ Lyophilized Standard, Detection Antibody Biotin Anti-Human IFN-γ , Capture Antibody Purified Anti-Human IFN-γ, Enzyme Reagent Streptavidin-horseradish peroxidase conjugate (SAv-HRP)
Human IL-2 ELISA SetBD555190ELISA
Protocol Step 5
Items: Recombinant Human IL-2 Lyophilized Standard, Detection Antibody Biotin Anti-Human IL-2 , Capture Antibody Purified Anti-Human IL-2, Enzyme Reagent Streptavidin-horseradish peroxidase conjugate (SAv-HRP)
IL-15R&D systemsP40933T Cells culture
Protocol Step 1
IL-21NovoproteinGMP-CC45T Cells culture
Protocol Step 1
IL-7R&D systemsP13232T Cells culture
Protocol Step 1
Inverted microscopeOlympusCKX41Cell culture
Protocol Step 1,3,4
JurkatATCCTIB-152CAR-Jurkat construction
Protocol Step 3
LSRFortessaBDLSRFortessaFlow cytometry
Protocol Step 2
Luciferase Assay SystemPromegaE1501luciferase reporter assay
Protocol Step 4
Items: Passive lysis buffer, firefly luciferase substrate
Microplate readerBioTekHTXELISA
Protocol Step 5
mobile CO2/O2/N2 Incubator ChamberChina Innovation Instrument Co., Ltd.Smartor118Hypoxic condition
Protocol Step 2, 3, 4
Mouse Anti-Hexa Histidine tagSigmaSAB2702218Immunoblotting
Protocol Step 3
NcmBlot Rapid Transfer BufferNCM biotechWB4600Immunoblotting
NcmECL UltraNCM biotechP10300Immunoblotting
Protocol Step 3
Items: NcmECL Ultra Luminol/Enhancer Reagent (A) ,NcmECL Ultra Stabilized Peroxide Reagent (B) 
NovoNectin -coated 48-well flat platesNovoproteinGMP-CH38CAR-T cells construction
Protocol Step 1
OPD (o-phenylenediamine dihydrochloride) tablet setSigmaP9187Substrate Reagent
Protocol Step 5
Items: OPD tablet (silver foil),urea hydrogen peroxide tablet (gold foil)
PE-conjugated anti-DYKDDDDKBiolegend637310Flow cytometry
Protocol Step 2
Protamine sulfateSigmaP3369-1OGLentivirus infection
Protocol Step 1
Protein Marker 10 Kda-250 KDaEpizymeWJ102Immunoblotting
Protocol Step 3
 Purifed NA/LE Mouse Anti-Human CD3BD566685T Cells culture
Protocol Step 1
Purified NA/LE Mouse Anti-Human CD28BD555725T Cells culture
Protocol Step 1
PVDF membraneMillipore168627Immunoblotting
Protocol Step 3
RPMI 1640Corning10-040-CVRCCell culture
Protocol Step 3
Skim milk powderYeasenS9129060Immunoblotting
Protocol Step 3
SKOV3-LucATCCHTB-77Cytotoxicity assay
Protocol Step 4
Trypsin-EDTANCM biotechC125C1Cell culture
Protocol Step 4
Tween 20Sinopharm30189328Immunoblotting
Protocol Step 3
Water bathkeelreinNB014467Heating
Protocol Step 1
X-VIVO 15 LONZA04-418QSerum-free lymphocyte culture medium
Protocol Step 1

References

  1. Boardman, A. P., Salles, G. CAR T-cell therapy in large B cell lymphoma. Hematol Oncol. 41 (S1), 112-118 (2023).
  2. Chen, Y. -. J., Abila, B., Mostafa Kamel, Y. CAR-T: What is next. Cancers. 15 (3), 663 (2023).
  3. Barsan, V., et al.

Explore More Articles

Chimeric Antigen Receptor T CellsCAR T CellsHypoxia sensitiveTumor MicroenvironmentOxygen dependent Degradation DomainFunctional VerificationCytotoxicitySolid Tumors

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados