Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This article describes the use of oleic acid-induced HepG2 cells as a model for metabolic dysfunction-associated steatotic liver disease.

Abstract

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has surged due to changes in economic and lifestyle patterns, leading to significant health challenges. Previous reports have studied the establishment of animal and cellular models for MASLD, highlighting differences between them. In this study, a cellular model was created by inducing fat accumulation in MASLD. HepG2 cells were stimulated with the unsaturated fatty acid oleic acid at various concentrations (0.125 mM, 0.25 mM, 0.5 mM, 1 mM) to emulate MASLD. The model's efficacy was assessed using cell counting kit-8 assays, Oil Red O staining, and lipid content analysis. This study aimed to create a simple-to-operate cellular model for MASLD cells. Results from the cell counting kit-8 assays showed that the survival of HepG2 cells was dependent on the concentration of oleic acid, with a GI50 of 1.875 mM. Cell viability in the 0.5 mM and 1 mM groups were significantly lower than those in the control group (P < 0.05). Furthermore, Oil Red O staining and lipid content analysis examined fat deposition at varying oleic acid concentrations (0.125 mM, 0.25 mM, 0.5 mM, 1 mM) on HepG2 cells. The lipid content of the 0.25 mM, 0.5 mM, and 1 mM groups was significantly higher than that of the control group (P < 0.05). Additionally, triglyceride levels in the OA groups were significantly higher than those in the control group (P < 0.05).

Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of conditions, including simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma1,2,3,4,5,6, all attributed to factors other than alcohol consuption7. MASLD is the most prevalent liver disease caused by metabolic liver injury, affecting nearly one-quarter of the global population8,

Protocol

NOTE: See the Table of Materials for details related to all materials, instruments, and reagents used in this protocol.

1. Cell culture

  1. Culture HepG2 cells in culture flasks containing Dulbecco's Modified Eagle Medium (DMEM) (containing 10% fetal bovine serum [FBS], 100 units/mL penicillin, and 100 µg/mL streptomycin). Maintain the culture flasks at 37 °C in a 5% CO2 incubator.

2. Ef.......

Representative Results

Effect of oleic acid on cell viability
HepG2 cells were exposed to varying concentrations of OA (0 mM, 0.125 mM, 0.25 mM, 0.5 mM, 1 mM), resulting in a decrease in cell survival rates at 0.125 mM, 0.25 mM, 0.5 mM, and 1 mM compared to 0 mM. Statistical significance was observed at 0.5 mM (P < 0.05) and 1 mM (P < 0.05) when compared to 0 mM. The results of OA's impact on cell viability, as assessed by the CCK-8 kit, are shown in Fig.......

Discussion

MASLD is a clinicopathological syndrome characterized by excessive intracellular fat deposition in hepatocytes due to factors beyond alcohol and other established liver-damaging agents18. MASLD is intricately linked to acquired metabolic stress liver injury, notably associated with insulin resistance and genetic susceptibility. To effectively study and screen drugs for MASLD, it is crucial to select an appropriate experimental model. Establishing a cell model is particularly vital in MASLD researc.......

Acknowledgements

The current study was granted by "Study on the key issues of curative effect of Koumiss on regional diseases of Mongolian medicine" in 2018 Supported Project of the science and technology program of the Department of Science and Technology of Inner Mongolia Autonomous Region.

....

Materials

NameCompanyCatalog NumberComments
0.22 µm filterMillex
0.25% Trypsin-EDTA (1x) Trypsin-EDTAGibco25200-056
0.45 µm filterMillex
2 mL Crygenic VialsCORNING430659
25 cm2 Cell Culture FlaskCORNING430639
6-well cell culture plateCORNING3516
96-well cell culture plateCORNING3599
Blood Count PlateShanghai Jing Jing Biochemical Reagent & Instrument Co.02270113
Cell Counting Kit-8 assaysBeijing Solarbio Science & Technology Co.,Ltd. CA1210-1000T
CO2 incubatorNUAIRENU-5710E
 DMSO Dimethyl sulfoxide Beijing Solarbio Science & Technology Co.,Ltd. D8371
Dulbecco's Modified Eagle MediumGibco8122691
Enzyme Labeling EquipmentTecanSpark
Fetal Bovine Serum, QualifiedGibco10099141
HepG2 cells lineBeijing North China Chuanglian Biotechnology Research Institute (BNCC)221031
Human Triglyceride (TG) ELISA instructionNanjing Jiacheng Bioengineering Institute20170301
Inverted Microscope for Cell CultureLeicaDMi1 
IsopropanolTianjin Zhiyuan Chemical Reagent Co.2021030141
Oil Red Stain Kit, For Cultured CellsBeijing Solarbio Science & Technology Co.,Ltd. G1262
Oleic acid Sangon Biotech (Shanghai) Co., Ltd.A502071
Penicillin StreptomycinGibco15140122
SPSS 24.0Statistics software

References

  1. Alisi, A., Feldstein, A. E., Villani, A., Raponi, M. Pediatric nonalcoholic fatty liver disease: a multidisciplinary approach. Nat Rev Gastroenterol Hepatol. 9 (3), 152-161 (2012).
  2. Anania, C., Perla, F. M., Olivero, F., Pacifico, L., Chiesa, C.

Explore More Articles

Metabolic Dysfunction associated Steatotic Liver DiseaseMASLDIn Vitro ModelingHepG2 CellsFat DepositionOleic AcidCell ViabilityLipid Content AnalysisOil Red O StainingTriglyceride Levels

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados