Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados Representativos
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Este trabajo explica cómo transformar las mitocondrias de la levadura utilizando un método biolístico. También mostramos cómo seleccionar y purificar los transformantes y cómo introducir la mutación deseada en la posición objetivo dentro del genoma mitocondrial.

Resumen

La levadura de panadería Saccharomyces cerevisiae se ha utilizado ampliamente para comprender la biología mitocondrial durante décadas. Este modelo ha proporcionado conocimiento sobre las vías mitocondriales esenciales y conservadas entre los eucariotas y las vías específicas de hongos o levaduras. Una de las muchas habilidades de S. cerevisiae es la capacidad de manipular el genoma mitocondrial, que hasta ahora solo es posible en S. cerevisiae y el alga unicelular Chlamydomonas reinhardtii. La transformación biolística de las mitocondrias de levadura nos permite introducir mutaciones dirigidas al sitio, hacer reordenamientos genéticos e introducir reporteros. Estos enfoques se utilizan principalmente para comprender los mecanismos de dos procesos altamente coordinados en las mitocondrias: la traducción por mitoribosomas y el ensamblaje de complejos respiratorios y ATP sintasa. Sin embargo, la transformación mitocondrial puede utilizarse potencialmente para estudiar otras vías. En el presente trabajo, mostramos cómo transformar las mitocondrias de levadura mediante bombardeo de microproyectiles a alta velocidad, seleccionar y purificar el transformador deseado e introducir la mutación deseada en el genoma mitocondrial.

Introducción

La levadura Saccharomyces cerevisiae es un modelo ampliamente reconocido que se utiliza para estudiar la biogénesis mitocondrial. Dado que la levadura es un organismo anaeróbico y facultativo, es posible estudiar ampliamente las causas y consecuencias de la introducción de mutaciones que perjudican la respiración. Además, este organismo posee herramientas genéticas y bioquímicas amigables para estudiar las vías mitocondriales. Sin embargo, uno de los recursos más poderosos para explorar los mecanismos de ensamblaje del complejo respiratorio y la síntesis de proteínas mitocondriales es la capacidad de transformar las mitocondrias y modificar el genoma del orgá....

Protocolo

NOTA: Recomendamos realizar seis transformaciones para cada constructo, ya que la eficiencia de la transformación mitocondrial suele ser baja. La composición de los diferentes medios de crecimiento se muestra en la Tabla 2.

1. Preparación de partículas de tungsteno

  1. Pesar 30 mg de partículas de tungsteno de 0,7 μm (WP, microportadores) en un microtubo. Añadir 1,5 mL de etanol al 70% (EtOH) para esterilizar. Agita los WP y déjalos reposar durante 10 minutos a temperatura ambiente.
  2. Centrifugar a 13.200 x g durante 15 min a temperatura ambiente. Lave los WP añadiendo 1,5 mL de agua ....

Resultados Representativos

En esta sección se presentan algunos resultados representativos de las diferentes etapas de la transformación mitocondrial. La figura 6 muestra un procedimiento de bombardeo. Las células rho- sintéticas portaban un plásmido bacteriano con el gen reportero ARG8m, que reemplazará la secuencia codificante de un gen mitocondrial (Figura 6A). Después del bombardeo, la placa se replicó en un medio que carecía de uracilo (-URA); .......

Discusión

El presente trabajo describe cómo transformar con éxito las mitocondrias de la levadura S. cerevisiae . El proceso, desde el bombardeo de microproyectiles a alta velocidad hasta la purificación de la cepa de levadura prevista, dura ~ 8-12 semanas, dependiendo de cuántas rondas de purificación de la cepa sintética sean necesarias. Algunos de los pasos críticos del método son los siguientes. En primer lugar, cuanto más grandes sean las regiones flanqueantes añadidas alrededor del sitio de la m.......

Divulgaciones

Los autores no tienen ningún conflicto de intereses que revelar.

Agradecimientos

Esta publicación contó con el apoyo del Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), UNAM [IN223623 a XP-M]. La UPD es becaria de CONAHCYT (CVU:883299). Queremos agradecer a la Dra. Ariann Mendoza-Martínez por su ayuda técnica con las imágenes del microscopio óptico. Licencias de Biorender: DU26OMVLUU (Figura 2); BK26TH9GXH (Figura 3); GD26TH80R5 (Figura 4); PU26THARYD (Figura 7); ML26THAIFG (Figura 9).

....

Materiales

NameCompanyCatalog NumberComments
1 mL pipette tipsAxygenT-1000-B
1.5 mL MicrotubeAxygenMCT-150-C
10 μL pipette tipsAxygenT-10-C
15 mL conical bottom tube AxygenSCT-25ML-25-S
200 μL pipette tipsAxygenT-200-Y
50 mL conical bottom  tubeAxygenSCT-50ML-25-S
AfiIINew England BioLabsR0520S
AgaroseSeaKem50004
Analytic balanceOHAUSARA520
AutoclaveTOMYES-315
Bacto agarBD214010
Bacto peptoneBD211677
Biolisitic Macrocarrier holder BIO-RAD1652322
Bunsen burnerVWR89038-528
Calcium chlorideFisher ScientificC79-500
CSM -ADEFormediumDCS0049
CSM -ARGFormediumDCS0059
CSM -LEUFormediumDCS0099
CSM -URAFormediumDCS0169
Culture glass flaskKIMAX KIMBLE25615
Culture glass tubePyrex9820
DextroseBD215520
EthanolJT Baker 9000
ForcepsMillipore620006
Glass beadsSigmaZ265926
Glass handleSigmaS4647
GlycerolJT BAKER2136-01
Helium tank grade 5 (99.99 %)--
HSTaq  KitPCR BIO
MicrocentrifugueEppendorf022620100
NdeINew England BioLabsR0111L
Orbital shakerNew Brunswick scientificNB-G25
PCR tubesAxygenPCR-02-C
PDS-1000/He TM Biolistic Particle Delivery SystemBIO-RAD165-2257
Petri dishes (100X10)BD252777
QIAprep Spin MiniprepQiagen27106
RaffinoseFormediumRAF03
Replica platerSciencewareZ363391
Rupture discs 1350 PsiBIO-RAD1652330
SorbitolSigmaS7547
SpermidineSigmaS0266
T4 DNA LigaseThermo ScientificEL0011
Tissue Culture RotatorThermo Scientific88882015
Tungsten microcarriers M10BIO-RAD1652266
Vaccum pump of 100L/min capacity--
Velvet padsBel-ArtH37848-0002
Vortex Scientifc IndustriesSI-0236
Wood aplicator stickPROMA1820060
Yeast extractBD212750
Yeast Nitrogen base without aminoacidsBD291920

Referencias

  1. Bonnefoy, N., Fox, T. D. In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol Gen Genet. 262 (6), 1036-1046 (2000).
  2. Franco, L. V. R., Su, C. H., McStay, G. P., Yu, G. J., Tzagoloff, A. <....

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Transformaci n MitocondrialSaccharomyces CerevisiaeLevadura de Panader aBiolog a MitocondrialGenoma MitocondrialTransformaci n Biol sticaMutaciones DirigidasReordenamientos G nicosReporterosMitoribosomasComplejos RespiratoriosATP SintasaBombardeo de Microproyectiles

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados