Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
* These authors contributed equally
Neurite outgrowth assays provide a quantitative value about regenerative neuronal processes. The advantage of this semi-automatic software is that it segments cell bodies and neurites separately by creating a mask and measures various parameters such as neurite length, number of branch points, cell-body cluster area, and number of cell clusters.
Effective live-imaging techniques are crucial to assess neuronal morphology in order to measure neurite outgrowth in real time. The proper measurement of neurite outgrowth has been a long-standing challenge over the years in the neuroscience research field. This parameter serves as a cornerstone in numerous in vitro experimental setups, ranging from dissociated cultures and organotypic cultures to cell lines. By quantifying the neurite length, it is possible to determine if a specific treatment worked or if axonal regeneration is enhanced in different experimental groups. In this study, the aim is to demonstrate the robustness and accuracy of the Incucyte Neurotrack neurite outgrowth analysis software. This semi-automatic software is available in a time-lapse microscopy system which offers several advantages over commonly used methodologies in the quantification of the neurite length in phase contrast images. The algorithm masks and quantifies several parameters in each image and returns neuronal cell metrics, including neurite length, branch points, cell-body clusters, and cell-body cluster areas. Firstly, we validated the robustness and accuracy of the software by correlating its values with those of the manual NeuronJ, a Fiji plug-in. Secondly, we used the algorithm which is able to work both on phase contrast images as well as on immunocytochemistry images. Using specific neuronal markers, we validated the feasibility of the fluorescence-based neurite outgrowth analysis on sensory neurons in vitro cultures. Additionally, this software can measure neurite length across various seeding conditions, ranging from individual cells to complex neuronal nets. In conclusion, the software provides an innovative and time-effective platform for neurite outgrowth assays, paving the way for faster and more reliable quantifications.
In sciatic nerves, it is possible to measure axonal regeneration1. Additionally, in vitro studies have shown the feasibility of monitoring axonal outgrowth2,3 to comprehend its various phases, from axonal sprouting to axonal degeneration, in both healthy and injured neurons. By tracking these processes, it is possible to measure parameters such as axonal polarity, initiation, stability, and branching. The last parameter is crucial to understand neuropathic pain perception4,5,6. Similar....
1. Scanning the vessel on the machine
NOTE: The detection is performed by the built-in Basler Ace 1920-155 µm camera.
The neurite outgrowth measurement algorithm is robustly capable of detecting neurites in both neural networks and single neurons. It generates a yellow mask that segments objects with high contrast, such as cell bodies, cellular debris, dead cells, tissue explants, and shadows. Additionally, a magenta mask appears on neurites of various thicknesses. Neurite length values are provided in mm/mm2, indicating that the axonal length has been divided by the area of the image, which is 0.282739 mm2 and con.......
Accurately measuring how neurons grow in healthy, injured, and diseased conditions is a critical parameter in many experimental setups within the neuroscience field. Whether working with organotypic cultures of whole DRG explants or dissociated cultures, properly measuring axonal outgrowth has been a significant challenge over the last 20 years. Without reliable and accurate quantification of neurite outgrowth, it is impossible to assess if a specific treatment, such as retinoic acid (for 4 days) for NSC-34 cells
We want to thank Alessandro Vercelli for the critical comments and Sartorius's technical support for the help. Our research on these topics has been generously supported by the Rita-Levi Montalcini Grant 2021 (MIUR, Italy). This research was funded by Ministero dell'Istruzione dell'Università e della Ricerca MIUR project Dipartimenti di Eccellenza 2023-2027 to Department of Neuroscience Rita Levi Montalcini. D.M.R.'s research has been conducted during and with the support of the Italian national inter-university PhD course in Sustainable Development and Climate Change (link: www.phd-sdc.it).
....Name | Company | Catalog Number | Comments |
Collagenase A | Merck / Roche | 10103586001 | |
Dispase II (neutral protease, grade II) | Merck / Roche | 4942078001 | |
Dulbecco's modified eagle's medium | Merck / Sigma | D5796 | |
Fetal bovin serum | Merck / Sigma | F7524 | |
Ham's F-12 Nutrient Mix (1X) | ThermoFisher Scientific | 21765029 | |
Ham's F12 w/ L-Glutamine | Euroclone | ECM0135L | |
Hanks' Balanced Salt Solution | Euroclone | ECM0507L | |
HBSS (10X), no calcium, no magnesium, no phenol red | ThermoFisher Scientific | 14185045 | |
HyClone Characterized Fetal Bovine Serum (U.S.) | Cytiva | SH30071.03 | |
Incucyte, Neurotrack Analysis Software | Sartorius | 9600-0010 | |
L-15 Medium (Leibovitz) | Millipore/Sigma | L5520 | |
Laminin Mouse Protein, Natural | ThermoFisher Scientific | 23017015 | |
L-Cysteine | Merck / Sigma | C7352 | |
Leibovitz's L-15 medium w/o L-glutamine | Euroclone | ECB0020L | |
mouse NGF 2.5S (>95%) | Alomone Labs | N-100 | |
Neurobasal Medium [-] Glutamine | ThermoFisher Scientific | 21103049 | |
NSC-34 | CELLutions Biosystems Inc (Ontario, Canada) | CLU140 | |
Papain from papaya latex | Sigma | P4762 | |
Penicillin-Streptomycin (5,000 U/mL) | ThermoFisher Scientific | 15070063 | |
Percoll (Density 1.130 g/mL) | Cytiva | 17089101 | |
Poly-D-Lysine Solution (1mg/mL) | EMD Millipore/Merck | A-003-E | |
Poly-L-Lysine Solution (0-01%) | Sigma | P4832 | |
Recombinant Human NT-3 | PeproTech | 450-03 | |
Retinoic Acid | Merck / Sigma | R2625 | |
Trypsin-EDTA solution | Sigma | T3924 | |
β-Tubulin III (Tuj1) antibody | Merck / Sigma | T8660 |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados