A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol provides detailed and comprehensive methods for the isolation, culture, polarization, and measurement of the glycolytic metabolic state of live bone marrow-derived macrophages (BMDMs). This paper provides step-by-step instructions with realistic visual illustrations for workflow and glycolytic assessment of BMDMs in real-time.
Macrophages are among the most important antigen-presenting cells. Many subsets of macrophages have been identified with unique metabolic signatures. Macrophages are commonly classified as M1-like (inflammatory) and M2-like (anti-inflammatory) subtypes. M1-like macrophages are pro-inflammatory macrophages that get activated by LPS and/or pro-inflammatory cytokines such as INF-γ, IL-12 & IL-2. M1-like polarized macrophages are involved in various diseases by mediating the host's defense to a variety of bacteria and viruses. That is very important to study LPS induced M1-like macrophages and their metabolic states in inflammatory diseases. M2-like macrophages are considered anti-inflammatory macrophages, activated by anti-inflammatory cytokines and stimulators. Under the pro-inflammatory state, macrophages show increased glycolysis in glycolytic function. The glycolytic function has been actively investigated in the context of glycolysis, glycolytic capacity, glycolytic reserve, compensatory glycolysis, or non-glycolytic acidification using extracellular flux (XF) analyzers.
This paper demonstrates how to assess the glycolytic states in real-time with easy-to-follow steps when the bone marrow-derived macrophages (BMDMs) are respiring, consuming, and producing energy. Using specific inhibitors and activators of glycolysis in this protocol, we show how to obtain a systemic and complete view of glycolytic metabolic processes in the cells and provide more accurate and realistic results. To be able to measure multiple glycolytic phenotypes, we provide an easy, sensitive, DNA-based normalization method for polarization assessment of BMDMs. Culturing, activation/polarization and identification of the phenotype and metabolic state of the BMDMs are crucial techniques that can help to investigate many different types of diseases.
In this paper, we polarized the naïve M0 macrophages to M1-like and M2-like macrophages with LPS and IL4, respectively, and measured a comprehensive set of glycolytic parameters in BMDMs in real-time and longitudinally over time, using extracellular flux analysis and glycolytic activators and inhibitors.
Macrophages are one of the most critical cells of the innate immune system M1-like. They are involved in clearing infectious diseases, phagocytosis, antigen presentation, and inflammation regulation2. Furthermore, macrophages are required to regulate other immune cells via various cytokines they release3. There is a big spectrum in macrophage phenotypes4. Depending on the signals that macrophages are exposed to, they polarize toward different inflammatory and metabolic states5. Macrophages manifest metabolic alterations in various diseases, depending on what tissue the macr....
Mice were humanely sacrificed according to Assessment and Accreditation of Laboratory Animal Care (AAALAC) and American Association for Laboratory Animal Science (AALAS) guidelines and using protocols approved by the Texas A&M University institutional animal care and use committee (IACUC).
1. Mice bone marrow harvest and culture of BMDMs
Glycolysis and mitochondrial oxidative phosphorylation are the two major ATP production pathways in the cells (Figure 4A). Some cells have the capability to switch between these two pathways to meet their energy demands. The conversion of glucose to pyruvate in the cytoplasm is called glycolysis. Pyruvate has two fates; it will either get converted to lactate or further metabolized through the TCA cycle and eventually through the electron transport chain (ETC.......
As mentioned earlier, the extracellular flux analyzer machine can provide real-time information about two major energy-producing pathways of the cells by measuring OCR (oxygen consumption rate), an indicator of mitochondrial OXPHOS activity, and ECAR (extracellular acidification rate) which is an indicator of glycolysis. Macrophages can use both pathways, depending on their microenvironment. They can also switch their energy production pathways17,18. Understandin.......
We thank Ms. Joanna Rocha for editorial assistance. The work was partially supported by the National Institutes of Health (NIH) R01DK118334 (to Drs. Sun and Alaniz) and (NIH) R01A11064Z (to Drs. Jayaraman and Alaniz).
....Name | Company | Catalog Number | Comments |
23G needles | VWR | BD305145 | |
2-mercaptoethanol | Life Technologies | 21985023 | |
50ml Conical Tube | VWR | 21008-951 | |
ACK lysis buffer | Thermo Fisher Scientific | A1049201 | It can be lab-made |
Agilent Seahorse XF glycolysis stress test kit | Agilent Technologies | 103020-100 | |
Agilent Seahorse XF Glycolysis Stress Test Kit User Guide | Agilent Technologies | 103020-400 | |
Agilent Seahorse XF Glycolytic Rate Assay Kit | Agilent Technologies | 103344-100 | |
Agilent Seahorse XF Glycolytic Rate Assay Kit User Guide | Agilent Technologies | 103344-100 | |
Alexa Fluor 488 anti-mouse CD206 (MMR) Antibody | BioLegend | 141710 | |
anti-mouse CD11b eFluor450 100ug | eBioscience | 48-0112-82 | |
BD 3ML - SYRINGE | VWR | BD309657 | Other syringes are acceptable too |
Cell counter-Vi-CELL- XR Complete System | BECKMAN COULTER Life Sciences | 731050 | Cells can be manually counted too |
Cell Strainer-70µm | VWR | 10199-656 | |
CyQUANT Cell Proliferation Assay Kit | Thermo Fisher Scientific | C7026 | |
F4/80 monoclonal antibody (BM8) pe-Cyanine7 | eBioscience | 25-4801-82 | |
Fetal Bovine Serum | Life Technologies | 16000-044 | |
Flow cytometer: BD LSFRFortessa X-20 | BD | 656385 | |
Kim Wipes | VWR | 82003-822 | |
LPS-SM ultrapure (tlrl-smpls) 5 mg | Invivogen | tlrl-smlps | |
MCSF | Peprotech | 315-02 | |
Murine IL-4 | Peprotech | 214-14 | |
PE Rat Anti-Mouse CD38 | BD Biosciences | 553764 | |
Penicillin-Streptomycin (10,000 U/mL) | Life Technologies | 15140122 | |
Petri Dish 100mm x 15 mm | Fisher Scientific | F80875712 | |
RPMI, Glutamax, HEPES | Invitrogen | 72400-120 | |
Seahorse Calibrant Solution | Agilent Technologies | 103059-000 | |
Seahorse XF 200mM Glutamine Solution | Agilent Technologies | 103579-100 | |
Seahorse XF Glycolytic Rate Assay Kit | Agilent Technologies | 103344-100 | |
Seahorse XFe96 FluxPaks | Agilent Technologies | 102416-100 | |
XF Glycolysis Stress Test Kit | Agilent Technologies | 103020-100 | |
XF RPMI Medium, pH 7.4 without phenol Red | Agilent Technologies | 103336-100 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved