JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Cancer Research

Identification of Quiescent Cells in a Zebrafish T-Cell Acute Lymphoblastic Leukemia Model Using Cell Proliferation Staining

Published: July 19th, 2024

DOI:

10.3791/67059

1Pharmacology and Nutritional Sciences, The University of Kentucky, 2Markey Cancer Center, The University of Kentucky, 3Department of Molecular and Cellular Biochemistry, The University of Kentucky

Cellular quiescence is a state of growth arrest or slowed proliferation that is described in normal and cancer stem cells (CSCs). Quiescence may protect CSCs from antiproliferative chemotherapy drugs. In T-cell acute lymphoblastic leukemia (T-ALL) patient-derived xenograft (PDX) mouse models, quiescent cells are associated with treatment resistance and stemness. Cell proliferation dyes are popular tools for the tracking of cell division. The fluorescent dye is covalently anchored into amine groups on the membrane and macromolecules inside the cell. This allows for the tracking of labeled cells for up to 10 divisions, which can be resolved by flow cytometry.

Ultimately, cells with the highest proliferation rates will have low dye retention, as it will be diluted with each cell division, while dormant, slower-dividing cells will have the highest retention. The use of cell proliferation dyes to isolate dormant cells has been optimized and described in T-ALL mouse models. Complementary to the existing mouse models, the rag2:Myc-derived zebrafish T-ALL model provides an excellent venue to interrogate self-renewal in T-ALL due to the high frequency of leukemic stem cells (LSCs) and the convenience of zebrafish for large-scale transplant experiments.

Here, we describe the workflow for the staining of zebrafish T-ALL cells with a cell proliferation dye, optimizing the concentration of the dye for zebrafish cells, passaging successfully stained cells in vivo, and the collection of cells with varying levels of dye retention by live cell sorting from transplanted animals. Given the absence of well-established cell surface makers for LSCs in T-ALL, this approach provides a functional means to interrogate quiescent cells in vivo. For representative results, we describe the engraftment efficiency and the LSC frequency of high and low dye-retaining cells. This method can help investigate additional properties of quiescent cells, including drug response, transcriptional profiles, and morphology.

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved