Integrating two fundamental energy storage elements in electrical circuits results in second-order circuits, encompassing RLC circuits and circuits with dual capacitors or inductors (RC and RL circuits). Second-order circuits are identified by second-order differential equations that link input and output signals.

Input signals typically originate from voltage or current sources, with the output often representing voltage across the capacitor and/or current through the inductor. For example, in an RLC circuit, initial energy stored in the capacitor and inductor initiates the circuit. Applying Kirchhoff's voltage law and performing a time derivative yields a second-order differential equation.

Equation1

Its coefficients, determined by resistance, capacitance, and inductance, manifest as the damping coefficient and resonant frequency.

Equation2

Equation3

The damping coefficient plays a critical role in these circuits, signifying the extent of damping caused primarily by the resistor. It directly influences the pace at which energy dissipates within the system, effectively controlling the rate of energy loss. On the other hand, the resonant frequency is a key characteristic that represents the circuit's innate oscillation frequency. It measures how quickly energy is exchanged between the inductor and capacitor in the circuit, illustrating the circuit's natural tendency to oscillate at a particular frequency.

The damping coefficient dictates how fast energy is lost in the system due to resistance. At the same time, the resonant frequency highlights the circuit's inherent oscillation speed as energy shifts between the inductor and capacitor. These two factors are crucial in understanding and analyzing the behavior of second-order circuits.

Tags
Second order CircuitsRLC CircuitsEnergy Storage ElementsDifferential EquationsInput SignalsOutput SignalsKirchhoff s Voltage LawDamping CoefficientResonant FrequencyCapacitanceInductanceEnergy DissipationCircuit Analysis

Du chapitre 5:

article

Now Playing

5.7 : Second-Order Circuits

First and Second-Order Circuits

1.0K Vues

article

5.1 : Circuits de premier ordre

First and Second-Order Circuits

1.0K Vues

article

5.2 : Circuit RC sans source

First and Second-Order Circuits

701 Vues

article

5.3 : Circuit RC avec source

First and Second-Order Circuits

661 Vues

article

5.4 : Circuit RL sans source

First and Second-Order Circuits

669 Vues

article

5.5 : Circuit RL avec source

First and Second-Order Circuits

535 Vues

article

5.6 : Exemple de conception : Réponse musculaire de la grenouille

First and Second-Order Circuits

136 Vues

article

5.8 : Circuit RLC série sans source

First and Second-Order Circuits

817 Vues

article

5.9 : Types de réponses des circuits RLC en série

First and Second-Order Circuits

605 Vues

article

5.10 : Circuit RLC série avec source

First and Second-Order Circuits

191 Vues

article

5.11 : Circuits RLC parallèles

First and Second-Order Circuits

612 Vues

article

5.12 : Circuits d’amplification opérationnelle de second ordre

First and Second-Order Circuits

167 Vues

article

5.13 : Exemple de conception : Circuit RLC parallèle sous-amorti

First and Second-Order Circuits

151 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.