Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Le présent protocole décrit des méthodes pour étudier la structure et la dynamique de deux protéines modèles qui jouent un rôle important dans la santé humaine. La technique combine la caractérisation biophysique de paillasse avec la spectroscopie d’écho de spin neutronique pour accéder à la dynamique aux échelles de temps et de longueur pertinentes pour les mouvements interdomaines des protéines.
L’activité et la fonctionnalité de la plupart des protéines du corps humain sont liées à des changements de configuration de sous-domaines entiers au sein de la structure cristalline de la protéine. Les structures cristallines constituent la base de tout calcul qui décrit la structure ou la dynamique d’une protéine, la plupart du temps avec de fortes restrictions géométriques. Cependant, ces restrictions de la structure cristalline ne sont pas présentes dans la solution. La structure des protéines dans la solution peut différer de celle du cristal en raison de réarrangements de boucles ou de sous-domaines sur l’échelle de temps pico à nanoseconde (c’est-à-dire le régime temporel de la dynamique interne des protéines). Le présent travail décrit comment les ralentis sur des échelles de temps de plusieurs dizaines de nanosecondes peuvent être accessibles en utilisant la diffusion des neutrons. En particulier, la caractérisation dynamique de deux protéines humaines majeures, une protéine intrinsèquement désordonnée qui n’a pas de structure secondaire bien définie et une protéine d’anticorps classique, est traitée par spectroscopie d’écho de spin neutronique (NSE) combinée à un large éventail de méthodes de caractérisation en laboratoire. D’autres connaissances sur la dynamique du domaine protéique ont été obtenues à l’aide de la modélisation mathématique pour décrire les données expérimentales sur les neutrons et déterminer le croisement entre les mouvements diffusifs et internes combinés des protéines. L’extraction de la contribution dynamique interne à la fonction de diffusion intermédiaire obtenue à partir de NSE, y compris l’échelle de temps des différents mouvements, permet une vision plus approfondie des propriétés mécaniques des protéines uniques et de la douceur des protéines dans leur environnement presque naturel dans la solution protéique encombrée.
Dynamique de sondage de la matière molle avec des neutrons
L’étude des propriétés dynamiques des protéines et des peptides est une partie importante de la recherche biophysique, et de nombreuses méthodes bien développées existent aujourd’hui pour accéder à un large éventail de paysages énergétiques1. Relier la dynamique révélée expérimentalement des protéines à leur fonction biologique est une tâche beaucoup plus difficile, nécessitant des modèles mathématiques complexes et des simulations dynamiques assistées par ordinateur. L’importance de la spectroscopie neutronique pour l’analyse des mouvements des protéines a été souli....
Les présents travaux caractérisent deux protéines : une protéine d’anticorps humains IgG régulière et le MBP intrinsèquement désordonné. La forme lyophilisée des protéines a été obtenue à partir de sources commerciales (voir tableau des matériaux).
1. Préparation d’échantillons de protéines
Les protéines IgG du sérum humain et des protéines MBP bovines ont été reconstituées à des concentrations élevées (~50 mg/mL) dans des tampons D2O-base. Comme les protéines ont été dissoutes à des concentrations élevées, les solutions obtenues étaient des solutions protéiques encombrées. Les dynamiques étudiées à l’aide de NSE souffrent de l’environnement surpeuplé dans lequel résident les protéines (interactions des facteurs de structure et effets hydrodynamiques).......
La spectroscopie NSE fournit une vue unique et détaillée de la dynamique des protéines, que d’autres techniques spectroscopiques ne peuvent pas produire. Les mesures sur une longue échelle de temps fournissent des observations de la diffusion translationnelle et rotationnelle des protéines, comme présenté ici. La dynamique segmentaire et d’autres oscillations internes se révèlent comme une forte désintégration de la fonction de diffusion cohérente S(Q, t) à une courte échelle de temps et sont b.......
L’auteur ne déclare aucun intérêt financier concurrent et aucun conflit d’intérêts. Le contenu du manuscrit est basé sur la conférence que l’auteur a présentée à la HANDS-Neutron Scattering Applications in Structural Biology School entre 2019 et 2021.
Cette recherche a utilisé les ressources de la source de neutrons de spallation (BL-15, BL-6, laboratoires de biologie et de chimie), un bureau du DOE de l’installation des utilisateurs scientifiques exploité par le laboratoire national d’Oak Ridge. Cette recherche a également utilisé les ressources du réacteur MLZ-FRM2 garching (KWS-2, Phoenix-J-NSE) et du JCNS1 de Forschungszentrum Jülich GmbH, en Allemagne. L’auteur remercie le Dr Ralf Biehl et le Dr Andreas Stadler pour leur aide à la modélisation et leur contribution à la recherche sur les protéines IgG et MBP, le Dr Piotr A. Żołnierczuk pour le soutien à la réduction des données NSE, le Dr Changwoo Do pour le so....
Name | Company | Catalog Number | Comments |
Bovine MBP protein solution | Sigma-Aldrich | M1891 | lyophilized powder reconstituted in D2O |
D2O - heavy water | Sigma-Aldrich | Product No. 151882 | liquid |
Dionized water | in house | - | for washing / cleanning cells |
DLS instrument | Zetasizer Nano ZS, FZ-Jülich | - | dynamic light scattering instrument |
Elastic scattering standards | SNS-NSE, ORNL | - | Al2O3 and Graphite powders |
Ethanol | Sigma-Aldrich | 65350-M | 70% ethanol for cleaning cells |
IgG protein solution | Sigma-Aldrich | I4506 | lyophilized powder reconstituted in D2O |
KWS-2 instrument | JCNS outstation at the MLZ, Garching, Germany | - | small angle neutron instrument |
Liquinox dish detergent | Alconox | - | Phosphate-free liquid lab glassware cleaner |
Na2HPO4·7H2O | Sigma-Aldrich | Product No.S9390 | disodium phosphate heptahydrate salt |
NaCl | Sigma-Aldrich | Product No.S9888 | sodium chloride salt |
NaH2PO4·H2O | Sigma-Aldrich | Product No. S9638 | monosodium phosphate monohydrate salt |
Nanodrop spectrophotometer | Thermo Scientific | Catalog number: ND-2000 | NanoDrop 2000/2000c Spectrophotometer |
Neutron alignment camera | NeutronOptics, Grenoble | NOG210222 | 100 x 100 mm camera with Sony IMX249 CMOS sensor |
Parafilm M - wax parafilm | Bemis | Parafilm M - 5259-04LC PM996 | all-purpose laboratory film in cardboard dispenser |
Phoenix-J-NSE Spectrometer | JCNS outstation at the MLZ, Garching, Germany | - | neutron spectrometer |
SasView | https://www.sasview.org/ | ||
SAXSpace, Anton Paar instrument | FZ-Jülich | - | small angle x-ray instrument |
Slide-A-Lyzer dialysis membranes | Thermo Scientific | 88400-88405 | Slide-A-Lyzer mini dialysis devices tubes of 3.5 K MWCO |
SNS Remote Analysis Cluster | Neutron Science Remote Analysis (sns.gov) | https://analysis.sns.gov | |
SNS-NSE spectrometer | ORNL, Oak Ridge, TN, USA | - | neutron spectrometer |
Sterile syringe filters | VWR | N.A. PN:28145-501 | 0.2 µm pore size filters |
Temperature Forcing System (TFS) | SP Scientific | Part Number 100004055 | sample environment equipment |
Urea -d4 | Sigma-Aldrich | Product No. 176087 | deuterated Urea salt |
Viscometer | FZ-Jülich | - | falling ball viscometer |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon