Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Ce protocole décrit en détail la préparation des complexes nucléosomiques à l’aide de deux méthodes de préparation des échantillons pour la congélation des grilles TEM.

Résumé

La réparation de l’ADN dans le contexte de la chromatine est mal comprise. Des études biochimiques utilisant des particules de noyau de nucléosome, l’unité répétitive fondamentale de la chromatine, montrent que la plupart des enzymes de réparation de l’ADN éliminent les dommages à l’ADN à des taux réduits par rapport à l’ADN libre. Les détails moléculaires sur la façon dont les enzymes de réparation par excision de base (BER) reconnaissent et éliminent les dommages à l’ADN dans les nucléosomes n’ont pas été élucidés. Cependant, les données biochimiques BER des substrats nucléosomales suggèrent que le nucléosome présente différentes barrières structurelles en fonction de l’emplacement de la lésion de l’ADN et de l’enzyme. Cela indique que les mécanismes employés par ces enzymes pour éliminer les dommages à l’ADN dans l’ADN libre peuvent être différents de ceux employés dans les nucléosomes. Étant donné que la majorité de l’ADN génomique est assemblée en nucléosomes, des informations structurelles sur ces complexes sont nécessaires. À ce jour, la communauté scientifique ne dispose pas de protocoles détaillés pour réaliser des études structurelles techniquement réalisables de ces complexes. Ici, nous fournissons deux méthodes pour préparer un complexe de deux enzymes BER génétiquement fusionnées (polymérase β et endonucléase AP1) liées à un espace mononucléotidique près de l’entrée-sortie du nucléosome pour la détermination structurelle de la cryo-microscopie électronique (cryo-EM). Les deux méthodes de préparation des échantillons sont compatibles pour vitrifier les grilles de qualité par congélation. Ce protocole peut être utilisé comme point de départ pour préparer d’autres complexes nucléosomiques avec différents facteurs BER, facteurs de transcription pionniers et enzymes modifiant la chromatine.

Introduction

L’ADN eucaryote est organisé et compacté par les protéines histones, formant de la chromatine. La particule centrale du nucléosome (NCP) constitue l’unité répétitive fondamentale de la chromatine qui régule l’accessibilité aux protéines de liaison à l’ADN pour la réparation, la transcription et la réplication de l’ADN1. Bien que la première structure cristalline en rayons X du NCP ait été résolue pour la première fois il y a plus de deux décennies2 et que de nombreuses autres structures du NCP aient été publiées depuis 3,4,5,6,<....

Protocole

1. Assembler les particules du noyau du nucléosome par dialyse sel-gardient

NOTE: La préparation de particules de noyau de nucléosome à l’aide de protéines histones recombinantes pour des études structurales a été décrite en détail par d’autres 14,15,16. Suivre la purification des histones recombinantes de X. laevis et de l’assemblage octomère d’histones décrites par d’autres14,15, et assembler le substrat nucléosomique comme décrit ci-dessous.

  1. Achetez tr....

Résultats

Des NCP correctement assemblés (Figure 2) ont été utilisés pour fabriquer un complexe avec une protéine de fusion recombinante de MBP-Polβ-APE1 (Figure 3). Pour déterminer le rapport NCP / MBP-Polβ-APE1 pour former un complexe stable, nous avons effectué des tests de déplacement de mobilité électrophorétique (EMSA) (Figure 4), qui ont montré une bande décalée individuellement du NCP avec un excès molaire 5 fois de M.......

Discussion

Un protocole spécifique pour purifier le facteur de réparation de l’ADN dépendra de l’enzyme d’intérêt. Cependant, il existe certaines recommandations générales, notamment l’utilisation de méthodes recombinantes pour l’expression et la purification des protéines18; si la protéine d’intérêt est trop petite (<50 kDa), la détermination de la structure par cryo-EM était presque impossible jusqu’à plus récemment grâce à l’utilisation de systèmes de fusion

Déclarations de divulgation

Les auteurs ne déclarent aucun intérêt concurrent.

Remerciements

Nous remercions le Dr Mario Borgnia du noyau cryo-EM de l’Institut national des sciences de la santé environnementale et le Dr Joshua Strauss de l’Université de Caroline du Nord à Chapel Hill pour leur mentorat et leur formation à la préparation de la grille cryo-EM. Nous remercions également le Dr Juliana Mello Da Fonseca Rezende pour son assistance technique dans les premières étapes de ce projet. Nous apprécions la contribution et le soutien clés du regretté Dr Samuel H. Wilson et des membres de son laboratoire, en particulier le Dr Rajendra Prasad et le Dr Joonas Jamsen pour la purification du complexe APE1-Polβ génétiquement fusionné. La recherche a été soutenue ....

matériels

NameCompanyCatalog NumberComments
1 M HEPES; pH 7.5Thermo Fisher Scientific15630080
1 M MgCl2Thermo Fisher ScientificAM9530G
10x TBEBio-rad1610733
25% glutaraldehydeFisher Scientific50-262-23
3 M KClThermo Fisher Scientific043398.K2
491 prep cellBio-rad1702926
Amicon Ultra 15 centrifugal filter (MW cutoff 30 kDa)Millipore SigmaZ717185
Amicon Ultra 4 centrifugal filter (MW cutoff 30 kDa)Millipore SigmaUFC8030
AutoGrid TweezersTed Pella47000-600
Automatic Plunge FreezerLeicaLeica EM GP
C-1000 touch thermocyclerBio-rad1851148
C-clips and ringsThermo Fisher6640--6640
Clipping stationSubAngostromSCT08
Dialysis Membrane (MW cufoff 6-8 kDa)Fisher Scientific15370752
Diamond TweezersTechni-Pro758TW0010
dsDNAIntegrated DNA techonologiesN/A
FEI Titan KriosThermo FisherKRIOSG4TEM
FPLC purification systemAKTA Pure29018224
Fraction collector Model 2110Bio-rad7318122
Glow Discharge Cleaning SystemTed Pella91000S
Grid BoxesSubAngostromPB-E
Grid Storage Accessory PackSubAngostromGSAX
Liquid EthaneN/AN/A
Liquid NitrogenN/AN/A
Minipuls 3 peristaltic two-head pumpGilsonF155008
NanodropThermo Fisher ScientificND-2000
Novex 16%, Tricine, 1.0 mm, Mini Protein GelsThermo Fisher ScientificEC6695BOX
PipetmanGilsonFA10002M
Pipette tips (VWR) Low RetentionVWR76322-528
Polyacrylamide gel solution (37.5:1)Bio-rad1610158
polyethylene glycol (PEG)Millipore SigmaP4338-500G
Pur-A-lyzer Maxi 3500Millipore SigmaPURX35050
Purified recombinant DNA repair factorN/AN/A
R 1.2/1.3 Cu 300 mesh GridsQuantifoilN1-C14nCu30-01
Recombinant histone octamerN/AN/A
Spring clipping toolsSubAngostromCSA-01
Superdex 200 column 10/300Millipore SigmaGE28-9909-44
Transmission Electron MicroscopeThermo FisherTalos Arctica 200 kV
Tweezers Assembly for FEI Vitrobot Mark IV-ITed Pella47000-500
UltraPure GlycerolThermo Fisher Scientific15514011
VitrobotThermo FisherMark IV System
Whatman Filter paper (55 mM)Cytiva1005-055
Xylene cyanolThermo Fisher Scientific440700500
Zeba Micro Spin Desalting Columns, 7K MWCO, 75 µLThermo Fisher Scientific89877

Références

  1. Ehrenhofer-Murray, A. E. Chromatin dynamics at DNA replication, transcription and repair. European Journal of Biochemistry. 271 (12), 2335-2349 (2004).
  2. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Biochimienum ro 186

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.