JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biochemistry

Preparation of Mechanically Stable Self-Assembled Peptides Hydrogels

Published: September 6th, 2024

DOI:

10.3791/67267

1The First Affiliated Hospital of Nanchang University, 2The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University

Abstract

Peptide hydrogels are highly hydrophilic, three-dimensional network gels formed by the self-assembly of nanofibers or polymers, creating water-locking networks. Their morphology closely resembles that of the extracellular matrix, allowing them to exhibit both the biological functions of peptides and responsive gelation properties. These unique characteristics have led to their extensive application in tissue engineering, three-dimensional cell culture, cancer therapy, regenerative medicine, and other biomedical fields. This article describes three methods for preparing ECF-5 peptide hydrogels using self-assembling peptides with environmentally responsive gelation processes: (1) pH-responsive gelation: varying pH levels induce the protonation or deprotonation of amino acid residues, altering electrostatic interactions between peptide molecules and promoting their self-assembly into hydrogels; (2) Metal ion addition: polyvalent metal ions chelate with negatively charged amino acid residues, acting as bridges between peptides to form a network hydrogel; (3) Solvent exchange: hydrophobic peptides are initially dissolved in non-polar organic solvents and subsequently induce self-assembly into hydrogels upon transitioning to a polar aqueous environment. These methods utilize conventional experimental procedures to facilitate peptide self-assembly into hydrogels. By designing peptide sequences to align with specific gelation-inducing conditions, it is possible to achieve finely tuned micro/nanostructures and biological functions, highlighting the significant potential of peptide hydrogels in the biomedical domain.

Explore More Videos

Biochemistry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved