A subscription to JoVE is required to view this content. Sign in or start your free trial.
This video describes the Drosophila ring gland, a complex endocrine structure important for biosynthesis and secretion of ecdysteroids and other hormones. The featured protocol demonstrates its dissection, fixation, and immunostaining.
This protocol is an excerpt from Imura et al., Protocols for Visualizing Steroidogenic Organs and Their Interactive Organs with Immunostaining in the Fruit Fly Drosophila melanogaster, J. Vis. Exp. (2017).
NOTE: The overall scheme of protocols is shown in Figure 1.
1. The Dissection of the Larval Ring Gland (RG)
NOTE: In D. melanogaster, which belongs to cyclorrhaphous Diptera, the PG is within a composite endocrine organ called the ring gland (RG, Figure 2D). Since it is unfeasible that the PG is surgically separated from other types of cells (discussed later), a practical target is to isolate an intact, undamaged RG by dissection.
Access restricted. Please log in or start a trial to view this content.
Figure 1: The overall scheme of protocols. Two distinct dissection methods are applicable to larvae and adult females, depending on the purpose of the experiments. The mounting methods are also devised according to sample conditions. Fixation, staining, and imaging techniques are basically common to all samples. Please click here...
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Egg collection | |||
tissue culture dish (55 mm) | AS ONE | 1-8549-02 | for grape-juice agar plates |
collection cup | HIKARI KAGAKU | ||
yeast paste | Oriental dry yeast, Tokyo | ||
100% grape juice | Welch Food Inc. | ||
rearing larvae | |||
small vials (12ml, 40×23.5 mm, PS) | SARSTEDT | 58.487 | |
disposable loop | AS ONE | 6-488-01 | |
standard fly food | The recipe is on the website of Bloomington stock center. | ||
Dissection | |||
dissecting microscope | Carl Zeiss | Stemi 2000-C | |
dissecting microscope | Leica | S8 AP0 | |
tissue culture dish (35 x 10 mm, non-treated) | IWAKI | 1000-035 | |
Sylgard | TORAY | coarting silicon inside dishes | |
Terumo needle (27G, 0.40 x 19 mm) | TERUMO | NN-2719S | A "knife" to cut the tissue |
forceps, Inox, #5 | Dumont, Switzerland | ||
insect pin (0.18 mm in diameter) | Shiga Brand | for fillet dissection | |
micro scissors | NATSUME SEISAKUSHO CO LTD. | MB-50-10 | |
Fixation | |||
ultrapure water | Merck Millipore | ||
phosphate buffered saline (PBS) | |||
Formaldehyde | Nacalai tesque | 16222-65 | |
Paraformaldehyde | Nacalai tesque | 02890-45 | |
Triton-X100 | Nacalai tesque | 35501-15 | |
microtubes (1.5 ml) | INA OPTIKA | CF-0150 | |
Incubation | |||
As one swist mixer TM-300 (rocker) | As one | TM-300 | rocker |
Bovine Serum Albumin | SIGMA | 9048-46-8 | |
Primary antibody | |||
anti-Sro (guinea pig), 1:1000 | |||
anti-GFP (rabbit), 1:1000 | Molecular Probes | A6455 | Shimada-Niwa ans Niwa, 2014 |
anti-GFP (mouse mAb, GF200), 1:100 | Nakarai tesque | 04363-66 | |
anti-5HT (rabbit), 1:500 | SIGMA | S5545 | |
anti-Hts 1B1 (mouse) | Developmental Studies Hybridoma Bank (DSHB) | 1B1 | |
anti-DE-cadherin (rat), 1:20 | DSHB | DCAD2 | |
anti-nc82 (mouse), 1:50 | DSHB | nc82 | |
Secondary antibody | |||
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate | Life Technologies | A-11008 | |
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate | Life Technologies | A-11001 | |
Goat anti-Rat IgG (H+L) Secondary Antibody, Alexa Fluor 546 conjugate | Life Technologies | A-11081 | |
Goat anti-Guinea Pig IgG (H+L) Secondary Antibody, Alexa Fluor 555 conjugate | Life Technologies | A-21435 | |
Alexa Fluor 546 dye-conjugated phalloidin | Life Technologies | A-22283 | |
Mounting reagents | |||
Micro slide glass | Matsunami Glass Ind.,Ltd. | SS7213 | |
Square microscope cover glass | Matsunami Glass Ind.,Ltd. | C218181 | |
FluorSave reagent (Mounting reagent) | Calbiochem | 345789 | |
Transfer pipette 1 ml (Disposable dropper) | WATSON | 5660-222-1S | |
Fly stocks | |||
w; GMR45C06-GAL4 | from Bloomington Drosophila Stock Center. (#46260) | ||
UAS–GFP; UAS–mCD8::GFP | gifts from K. Ito, The University of Tokyo. | ||
w[1118] | |||
w; phantom-GAL4#22/UAS-turboRFP | |||
w; UAS-mCD8::GFP; TRH-GAL4 | Li, H. H. (2014) and Alekseyenko, O. V, Lee, C. & Kravitz, E. A. (2010) | ||
w; UAS-mCD8::GFP | from Bloomington Drosophila Stock Center. (#32188) | ||
yw;; nSyb-GAL4 | from Bloomington Drosophila Stock Center. (#51941) |
Access restricted. Please log in or start a trial to view this content.
This article has been published
Video Coming Soon
Source: Imura, E., et al. Protocols for Visualizing Steroidogenic Organs and Their Interactive Organs with Immunostaining in the Fruit Fly Drosophila melanogaster. J. Vis. Exp. (2017).
Copyright © 2025 MyJoVE Corporation. All rights reserved