Method Article
Human tuberculosis infection is a complex process, which is difficult to model in vitro. Here we describe a novel 3D human lung tissue model that recapitulates the dynamics that occur during infection, including the migration of immune cells and early granuloma formation in a physiological environment.
שחפת (TB) עדיין מחזיק איום חמור על בריאותם של אנשים ברחבי העולם, ויש צורך במודלים יעילים וחסכוניים אבל אמין כדי לעזור לנו להבין את מנגנוני המחלה ולקדם את התגליות של אפשרויות טיפול חדשות. בתרביות תאים במבחנה של monolayers או שיתוף תרבויות חסרות הסביבה תלת-ממדית (3D) ותגובות רקמה. בזאת, אנו מתארים חדשניים במודל חוץ גופית של רקמת ריאה אנושית, שטומנת בחובו הבטחה להיות כלי יעיל ללימוד האירועים המורכבים המתרחשים במהלך זיהום בשחפת Mycobacterium (שחפת). מודל רקמת 3D מורכב מתאי רקמות ספציפיות אפיתל fibroblasts, אשר בתרבית במטריצה של קולגן על גבי קרום נקבובי. עם חשיפה לאוויר, תאי האפיתל רבד ולהפריש ריר בצד הפסגה. על ידי החדרת מקרופאגים העיקריים האנושיים נגוע במ ' שחפת למצב הרקמותl, שהראינו כי תאים חיסוניים לנדוד לתוך הרקמות הנגועים וצורת granuloma TB שלבים מוקדמים. מבנים אלה לשחזר את התכונה הייחודית של שחפת אדם, granuloma, שהוא שונה או לא נפוץ שנצפה במודלים של בעלי חיים ניסיוניים בשימוש נרחב במהותו. שיטה זו מאפשרת תרבות organotypic הדמיית 3D וניתוח כמותי חזק המספק מידע מרכזי על תכונות מרחב ובזמן של אינטראקציות תא-פתוגן מארח. יחדיו, מודל רקמת הריאה מספק רקמות מיקרו-סביבה רלוונטית מבחינה פיזיולוגית ללימודים שבחפת. לפיכך, יש מודל רקמת הריאה השלכות פוטנציאליות לשני מחקרים מכניסטית ומיושמים בסיסיים. חשוב לציין, המודל מאפשר תוספת או מניפולציה של סוגי תאים בודדים, שבכך מרחיב את השימוש בו לדוגמנות מגוון של מחלות זיהומיות המשפיעות על הריאות.
בבני אדם, תגובות לזיהום, דלקת רקמה, גיוס סלולארי, שיפוץ רקמות והרגולציה של הומאוסטזיס רקמה הן אירועים מורכבים של תאים מסוגים שונים. לפיכך, תהליכים אלה למדו הטובים ביותר בסביבת הרקמות המקומית. בעבר, זה היה אפשרי בעיקר באמצעות מודלים של בעלי חיים ניסיוניים. עם זאת, חיות ניסוי בשימוש נרחב להחזיק מגבלות רבות כפי שהם לעתים קרובות מגיבים לפתוגנים באופן שונה מבני האדם וגם להציג במהלך המחלה 1 שונה. אדם במודל רקמת הריאה מבחנה מחזיק אפשרויות ללמוד תגובות חיסוני ספציפיות בריאות האנושיות.
זיהום שחפת אדם (TB) הוא מחלה הפוגעת בעיקר הריאות. שחפת Mycobacterium (שחפת), הסוכן סיבתי של שחפת, מגיעה לריאות באמצעות טיפות תרסיס שמועברים למרחב מכתשי, שבו החיידקים נבלעים על ידי dendri ריאהתאי טיק ומקרופאגים מכתשיים כחלק מהתגובה החיסונית המולדת לזיהום 2,3. Phagocytosis של הפתוגן מוביל למידור של באג בתוך phagosome ובאופן אידיאלי תוצאות בנטרול וההרג של הפתוגן ידי תָא בַּלעָן. עד 50% מאנשים שנחשפו למ ' הם האמינו שחפת להיות מסוגל לנקות את הזיהום באמצעות התגובה החיסונית המולדת 4. תוצאות אחרות של זיהום הן אישור על ידי המערכת החיסונית אדפטיבית בשלב מאוחר יותר, זיהום סמוי או במקרים הגרועים ביותר מחלה כרונית פעילה 5.
בעבר לא היו דגמי רקמה במבחנה ללימודים של שחפת אדם. תרביות תאים בודדות של מקרופאגים אדם או תאי דם היקפיים אחרים שימשו לעתים קרובות 6,7. החסרון של גישה זו הוא שהם לא יכולים לשקף את הדינמיקה של סוגי תאים שונים הפועלת יחד ברקמת ריאה נחשפה למ ' שחפת . לפיכך, יש צורך במודל במבחנה כדי להיות מסוגל לבצע מחקרים פונקציונליים ומכאניים בשחפת. במודל רקמת ריאה מבחנה אנושית המתואר כאן מבוסס התא הוקם במקור על ידי הקבוצה שלנו ללימודים בפונקציות תאים דנדריטים 8. יש לנו שיטה זו מותאמת למחקר של שחפת.
מודל רקמת ריאה האנושי מוצג כאן מורכב מתאי האפיתל רקמות ספציפיות ופיברובלסטים 8. תאים אלה בתרבית במטריצה של קולגן על גבי קרום נקבובי בכנס transwell ומבני צורה דומה רקמה נורמלית אנושית ריאות (איור 1). כאשר נחשפו לאוויר התאים מתחילים להפריש ריר בצד הפסגה 8. על ידי השתלת מקרופאגים העיקריים האנושיים נגוע במ ' שחפת למודל, שראינו כיצד תאי המערכת החיסונית להעביר ברקמה וליצור של גרנולומות TB 9 שלבים מוקדמים. זהו מודל descr רקמה האנושי הראשוןibed לשחפת והוא מציב כלי מבטיח ללימוד תגובות חיסון מולדים לשחפת ומחלות אחרות של הריאות. עד כה, יש לנו להשתמש רק מונוציטים ומקרופאגים כתאי מערכת חיסון במודל אבל רמת המורכבות יכולה להיות מוגברת על ידי הכללה של סוגי תאים רלוונטיים נוספים.
איור 1. מתווה סכמטי של מודל רקמת ריאה. (א) המודל מורכב מתאי האפיתל ריאות ספציפיות אנושיים, מ ' שחפת -infected מקרופאגים הראשוניים ומונוציטים שכותרתו צבע אדום זורעים על fibroblasts קולגן המוטבע הוכן על מסנן transwell. חשיפה של מודל הרקמה לאוויר יוזמת ייצור של חלבוני מטריצת חוץ-תאיים, הפרשת ריר וריבוד על ידי אפיתל. מודל רקמת 3D וכך פיתח הוא כלי שימושי ללמוד מ ' זיהום שחפת בסביבה שCLOsely דומה ריאות אנושיות. (ב) תמונות מיקרוסקופיות נציג של השלבים השונים בהכנת מודל הרקמות. מבנה מלא של סעיף רקמות מודל ריאות (C). קנה מידה -. 100 מיקרומטר אנא לחץ כאן כדי לצפות בגרסה גדולה יותר של דמות זו.
הערה: דם היקפי אדם מתורמי דם בריאים אנונימי רכשו בבנק של Linköping בית החולים של אוניברסיטת הדם, שוודיה שימשה כמקור לתאי מערכת חיסון למחקר זה. פרוטוקול זה מיועד למוסיף 24 מ"מ צלחת 6 היטב. הסתגלות ישירה לפורמטים אחרים גם אינה מומלצת שכן חוזי מודל רקמה אנכי ואופקי בפיתוח.
1. הכנת חומרים, מדיה והתרבות של חיידקים / קווים סלולריים
2. הכנת פיברובלסטים משובץ-קולגן
3. תרבות רציפה של מטריקס פיברובלסטים-קולגן
4. זריעה של תאי מערכת חיסון (אינפקטד תערובת נגוע מונוציטים-מקרופאג /)
הערה: שלבי הניסוי הבאים כרוכים mycobacteria הארסית ולכן יש לבצע במתקן BSL-3.
5. זריעה של תאי הריאה אפיתל (16HBE)
הערה: השלבים הבאים יש לבצע במתקן BSL-3.
6. מיזוג-חשיפה של ריאות 3Dדגם
הערה: יום 5 לאחר תוספת של מקרופאגים נגועים לאחר, דגמי הרקמה הם חשוף אוויר ואת השלבים הבאים יש לבצע במתקן BSL-3.
7. קציר והרכבת דגם רקמות 3D ריאות
הערה: השלבים הבאים יש לבצע במתקן BSL-3.
8. ויזואליזציה, רכישה וניתוח כמותי 3D
מודל רקמת הריאה 3D לשחפת אנושית ניתן להשתמש ביעילות כדי ללמוד את אינטראקציות מארח הפתוגן במ ' זיהום שחפת. השלבים הבסיסיים של שיטה זו, תמונות מיקרוסקופיות נציג של צעדים שונים ומבנה מיקרוסקופי כולל של סעיף רקמות מתוארות באיור 1. יש המודל מספר מרכיבים של רקמת ריאה אנושית, כולל fibroblasts ריאות, תאי האפיתל הסימפונות ומונוציטים עיקריים / מקרופאגים משובץ בסביבת רקמות 3D. מלבד שילוב מרכיבים של רקמת ריאה אנושית, המודל דומה תנאים פיסיולוגיים כלומר ריבוד של epithelia והפרשת ריר.
דוגמא לשימוש במודל רקמת הריאה בניטור זיהום שחפת מוצגת באיור 2. להמחשה מ ' הגירת שחפת -immune תא ואינטראקציה, הצגנו מקרופאגים נגועים במ ' שחפת שמבטאת GFP(ירוק) יחד עם מונוציטים המבודדים הטרי שכותרת PKH26 (האדומה) למודל הרקמות (כחול, DAPI מוכתם לגרעינים). יום 7 לאחר תוספת של מ 'ב תאי -infected שחפת למודל הרקמות, מיקרוסקופיה confocal מגלה אשכולות של מונוציטים אדומים באתר של זיהום (ירוק) (איור 2), אשר מחקה את נגעי סימן ההיכר של שחפת אדם 9.
סדרה של תמונות נציג להדמיה 3D של מ ' שחפת -infected מודל וכימות של צבירי תאי רקמה מוצג באיור 3. הדמיית 3D נותנת גמישות למשתמש אינטראקציה, לבחון ולכמת כמה תכונות בתמונת 3D. הסידור המרחבי של חיידקים ירוקים ואשכולות מונוציטים אדומים ניתן לראות ממבט הפסגה, סיבוב ורוחב כפי שמודגם באיור 3, אשר חושפים אשכולות של מונוציטים באתר של מ ' שחפת. האשכולות לא אובשירת ברקמות נגוע (איור 3 א). אנחנו לכמת את הגודל ומספר אשכולות תא מונוציטים ומצאנו שהגודל (נפח) של אשכולות תא מוגבר (p <0.001), בעוד שמספר מונוציטים בודדים ירד (p <0.01) במ ' שחפת נגועה רקמות בהשוואה לדגמים נגוע רקמה (איור 3 ג ו3D). נתונים אלה מאמת הממצא הקודם שלנו של היווצרות granuloma המוקדמת במ ' זיהום שחפת שנצפה בדגמי רקמת ריאה מנותחים בסעיפים רקמות 2D 9.
הנתונים שלנו מצביעים על כך שמודל הרקמה מספק בית גידול טבעי 3D לחקור את המארח המורכב תאי ד'מ ' רשת תקשורת שחפת. מצאנו גם כי הדמיית 3D וניתוח כמותי כלים טובים יותר ללימוד התכונות במודל הרקמה (איור 3). כימות של אשכול תא (granuloma למשל) לעתים קרובות סטרץ הס לכמה שכבות תאים ויכולים להיות שנתפס לחלוטין על ידי ניתוח כמו 3D. יתר על כן, להדמיה של תכונות מרחב ובזמן מדויקות של תאים או חיידקים במודל פרט לאפשר לימודים בשידור חי-הדמיה, הגירה ומעקב במעבדה ייעודית.
איור מונוציטים 2. באשכול מודל רקמות סביב מ 'ארסי שחפת. תמונות confocal נציג נגוע ומ ' מודל רקמות נגועות בשחפת מוצג. פנלים מירוקים (מ 'tuberculosis- GFP), (מונוציטים שכותרת PKH26) אדומים, (גרעינים צבעוניים DAPI) כחולים וערוצים התמזגו להראות הגיוס של מונוציטים ברקמה נגועה בהשוואה לרקמות נגוע. קנה מידה - 100 מיקרומטר.large.jpg "style =" font-size: 14px; קו-גובה: 28px; "target =" _ blank "> לחץ כאן כדי לצפות בגרסה גדולה יותר של דמות זו.
איור 3. הדמיה 3D וניתוח כמותי של מודל רקמה לספק מידע שימושי. נציג תמונות של הדמיית 3D של המודל כולו הרקמה () רקמה נגוע, (ב) נגוע במ ' שחפת, דרך חתך אופטי באמצעות מיקרוסקופ confocal Zeiss LSM700 וניתוח כמותי על ידי תוכנת Imaris עיבוד תמונה (גרסה 7.6.8). תמונות אלה נרכשו בהגדלה 20X, 14 Z- ערימות כיסוי עובי רקמה של 19.5 מיקרומטר עם 1.5 מיקרומטר מרווח, המאפשר הדמיה מהפסגה אופקית, סיבוב, מבט סיבובי אנכי ורוחבי (A ו- B). (ג) קואהגודל ניתוח ntitative של צבירי תאי מונוציטים חושפים משופר (p <0.0001) של אשכולות granuloma מוקדם לאחר מ ' זיהום שחפת בהשוואה להיעדרות של זיהום. (ד) כימות מספר מונוציטים הראו ירידה (p <0.01) ברקמות נגועות בהשוואה לרקמה נגוע, חוזר יותר אשכולות ברקמה נגועה. ירוק - מ ' -GFP שחפת, אדום - מונוציטים PKH26 כותרת, כחול - גרעין תא, בקנה מידה -. 100 מיקרומטר אנא לחץ כאן כדי לצפות בגרסה גדולה יותר של דמות זו.
The ability to recruit and form organized cell clusters at the site of infection is the hallmark of human TB 11. These dynamic structures known as tubercle granulomas primarily consist of immune cells (macrophages, monocytes, T-cells and B-cells) and multi-nucleated giant cells surrounding M. tuberculosis. The role of the granuloma has long been considered to wall off the infection, preventing local spread of bacteria. However, more recent studies show that granuloma formation is critical for early bacterial survival, growth and dissemination 12. A strategy of new studies is to identify molecules or pathways that could efficiently be targeted to inhibit the cellular migration in granuloma formation and/or TB dissemination.
A caveat for novel studies on TB is the lack of models that recapitulate human TB. The most widely used experimental animals do not form true granuloma upon M. tuberculosis infection, and are therefore not appropriate choices for studies of TB 13-16. Non-human primates have the closest resemblance to human TB 17, but are not the preferred choice owing to high operational costs and ethical issues. Human TB is a complex immunological process and is difficult to model in vitro. Cell cultures of monolayers or co-cultures lack the 3D environment and tissue responses. Therefore, we have developed an innovative lung tissue model based on human primary immune cells and human lung-specific cell lines 8,9. The model displays characteristic features of human lung tissue, including epithelia with evenly integrated macrophages, formation of extracellular matrix, stratified epithelia and mucus secretion 9.
The 3D human lung tissue model has several benefits over the in vitro single or co-cultures seeded on tissue culture plates or transwell inserts. First, the human lung-specific cells (fibroblasts and epithelial cells) are not commonly included in the in vitro single or co-cultures. Second, the immune cells and lung-specific cells are embedded in a 3D physiological context (collagen rich extra-cellular matrix products). The response of cells to a stimulus/infection and the migratory behaviour of cells, for instance formation of a granuloma, differ significantly between a 2D and 3D environment. Furthermore, the described method enables the 3D visualization and robust 3D quantitative analysis that provides pivotal information on spatial distribution and intricate cellular interactions.
Experimental infection in the model tissue with M. tuberculosis resulted in clustering of macrophages at the site of infection, reminiscent of early TB granuloma (Figure 2 and 3). We have recently demonstrated that mutant strains defective in the ability to secrete the virulence factor ESAT-6 or Mycobacterium bovis BCG that lacks ESAT-6 did not induce the clustering of monocytes (no early granuloma), in contrast to the virulent M. tuberculosis 9. These data are consistent with the observations made from Mycobacterium marinum-infected zebrafish embryos, whose transparency allows for elegant live imaging of granuloma formation 12. As there is no gold-standard model for TB, we took advantage of the surgically resected tissue biopsies from TB patients for validation of the method 9. Our in vitro tissue model shares several characteristics with the lung and lymph node biopsies from TB patients, including the aggregation of macrophages in granuloma, the presence of both intra- and extracellular bacteria 18 and induction of necrosis 11.
Although the described model has physiological relevance to human TB and has several advantages over other in vitro models, it has some limitations. For instance, out of more than 20 collagen proteins identified in humans, only type I is included to the model to mimic the extra-cellular matrix. However, type I collagen is a complex mixture of extra-cellular matrix products and is the most abundant collagen in the human body. Further, we have demonstrated the presence of collagen IV and several extra-cellular matrix proteins such as tropoelastin, vimentin and laminin, which are produced by the epithelial cells and fibroblasts in the tissue model, indicating the synthesis of new collagen 8. Presently, the lung tissue model only has monocytes and macrophages, besides lung-specific cells. It lacks neutrophils and lymphocytes that are also known to be present in the granuloma. Remarkably the model is not limited to the introduction of additional immune cells and is of interest to explore how they contribute to the complex cellular interactions in human TB. Implantation of primary alveolar macrophages, skin-specific cells and lung carcinoma cells has already been tested in the model. Since our objective was to use a model that closely resembles human TB, introduction of mouse cells have not been attempted.
In summary, the lung tissue model has implications for both basic mechanistic and applied studies. Potential applications of the lung model include the study of innate immunity, investigating mechanistic aspects of host defences such as phagosomal maturation, autophagy, production of cytokines, chemokines and anti-microbial peptides, and functional characterization of individual cell types. Strikingly, the in vitro tissue model allows manipulation of one or more cells types and provides a relevant tissue micro-environment, not only for studies on TB, but for a variety of infectious and non-infectious diseases that affect the lungs.
The authors declare no competing financial interests.
The authors acknowledge the Microscopy core facility at the Faculty of Health Sciences, Linköping University for providing access to advanced imaging systems; Karl-Eric Magnusson (Emeritus Scientist) at the Dept. of Clinical and Experimental Medicine, Linköping University for providing access to Imaris 3D/4D image processing software (Bitplane, Switzerland); and S. Braian for his help with the lung model cartoon. This work was supported by funds from the Swedish Research Council (Alternatives to animal research, 2012-1951) and Swedish Research Council (2012-3349) to M.L. and Swedish Foundation for Strategic Research to S.B. S.B. receive grants from the Karolinska Institutet, Swedish Research Council, the Swedish International Development Cooperation Agency (Sida) and the Swedish Civil Contingencies Agency (MSB), and the Swedish Heart and Lung Foundation (HLF). M.S. received grants from the Karolinska Institutet and Stockholm County Council.
Name | Company | Catalog Number | Comments |
Cell culture inserts | BD Falcon | 353092 | |
6-well culture plates | BD Falcon | 353046 | |
MRC-5 cells, lung fibroblasts | ATCC#CCL-171 | ||
16HBE cells, lung epithelial cells | Gift from Dr. Dieter Gruenert, Mt. Zion Cancer Center, University of California, San Fransisco, USA | ||
5 x Dulbecco’s modified Eagle’s medium (5 x DMEM) | Gibco | 12800-082 | Made from powder but add 5 times less water. Adjust pH to 7.3 and filter it using a 0.2 µm filter. |
Dulbecco’s modified Eagle’s medium with glucose (DMEM) 1x | Gibco | 41965-039 | |
Minimum Essential Medium (MEM) 1x with Earle’s salts | Sigma | M4655 | |
Non-Essential Amino Acids Solution, 100x | Life Technologies | 11140-035 | |
L-glutamine 200 mM (100x) | Gibco | 25030-024 | |
Sodium Pyruvate | Life Technologies | 11360-039 | |
NaHCO3 (71.2 mg/ml) | Prepared in house | ||
Heat inactivated Fetal Bovine Serum (FBS) | Gibco | 10270-106 | Heat inactivated for 30 min, 56 °C |
Gentamicin (50 mg/ml) | Gibco | 15750-060 | |
Hepes buffer solution 1M | Gibco | 15630-056 | |
Penicillin Streptomycin (Pen Strep) | Gibco | 15140-122 | |
Lymphoprep | Axis-Shield | 7801 | |
Ultrapure 0.5 M EDTA | Gibco | 15575 | |
Bovine Collagen PA treated (500 ml) | Organogenesis | 200-055 | |
Pure col purified Bovine Collagen solution (100 ml) | Advanced biomatrix | 5005-B | |
Extracellular matrix protein, Fibronectin (1 mg) | BD | 354008 | |
Primary human monocytes/macrophages | Isolated from human whole blood or buffy coats. | ||
PKH26 Red fluorescent cell linker | Sigma | MINI26 | |
Mycobacterium tuberculosis H37Rv expressing green fluorescent protein | M. tuberculosis H37Rv wild type was transformed with the pFPV2 plasmid constitutively expressing GFP. | ||
Middlebrook 7H9 medium | Difco | 271310 | |
BBL Middlebrook ADC Enrichment | BBL | 211887 | |
Tween-80 | |||
Glycerol | |||
Kanamycin B sulfate (20 µg/ml) | Sigma | B5264 | |
Prolong Gold anti=-fade reagent with DAPI | Invitrogen | P36935 | |
Trypsin -EDTA | |||
Bovine serum albumin | |||
Paraformaldehyde | |||
DAPI | |||
LSM700 Confocal microscope | Zeiss | ||
iMaris Scientific 3D/4D image processing software, version 7.6.8 | Bitplane AG |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved