Max Planck Institute of Biochemistry

3 ARTICLES PUBLISHED IN JoVE

image

Biology

Sample Preparation by 3D-Correlative Focused Ion Beam Milling for High-Resolution Cryo-Electron Tomography
Anna Bieber *1, Cristina Capitanio *1, Florian Wilfling 1,2, Jürgen Plitzko 1, Philipp S. Erdmann 1,3
1Max Planck Institute of Biochemistry, 2Max Planck Institute for Biophysics, 3Fondazione Human Technopole

Here, we present a pipeline for 3D-correlative focused ion beam milling on guiding the preparation of cellular samples for cryo-electron tomography. The 3D position of fluorescently tagged proteins of interest is first determined by cryo-fluorescence microscopy, and then targeted for milling. The protocol is suitable for mammalian, yeast, and bacterial cells.

image

Bioengineering

Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles
Yashar Bashirzadeh *1, Nadab Wubshet *1, Thomas Litschel 2, Petra Schwille 3, Allen P. Liu 1,4,5,6
1Department of Mechanical Engineering, University of Michigan, Ann Arbor, 2John A. Paulson School of Engineering and Applied Sciences, Harvard University, 3Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 4Department of Biomedical Engineering, University of Michigan, Ann Arbor, 5Department of Biophysics, University of Michigan, Ann Arbor, 6Cellular and Molecular Biology Program, University of Michigan, Ann Arbor

This article introduces a simple method for expeditious production of giant unilamellar vesicles with encapsulated cytoskeletal proteins. The method proves to be useful for bottom-up reconstitution of cytoskeletal structures in confinement and cytoskeleton-membrane interactions.

image

Biochemistry

Mass-Sensitive Particle Tracking to Characterize Membrane-Associated Macromolecule Dynamics
Frederik Steiert 1,2, Tamara Heermann 1, Nikolas Hundt 3, Petra Schwille 1
1Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 2Department of Physics, Technical University Munich, 3Department of Cellular Physiology, Biomedical Center (BMC), Ludwig-Maximilians-Universität München

This protocol describes an iSCAT-based image processing and single-particle tracking approach that enables the simultaneous investigation of the molecular mass and the diffusive behavior of macromolecules interacting with lipid membranes. Step-by-step instructions for sample preparation, mass-to-contrast conversion, movie acquisition, and post-processing are provided alongside directions to prevent potential pitfalls.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved