Intravital microscopy of the mouse M. cremaster microcirculation offers a unique and well-standardized in vivo model for the analysis of peripheral bone marrow stem cell migration.
This protocol describes how to produce functional sinus nodal tissue from murine pluripotent stem cells (PSC). T-Box3 (TBX3) overexpression plus cardiac Myosin-heavy-chain (Myh6) promoter antibiotic selection leads to highly pure pacemaker cell aggregates. These “Induced-sinoatrial-bodies” (“iSABs”) contain over 80% pacemaker cells, show highly increased beating rates and are able to pace myocardium ex vivo.
This manuscript describes the efficient, non-viral delivery of miR to endothelial cells by a PEI/MNP vector and their magnetization. Thus, in addition to genetic modification, this approach allows for magnetic cell guidance and MRI detectability. The technique can be used to improve the characteristics of therapeutic cell products.
Here, we describe the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) for the analysis of the gap junction-dependent shuttling of miRNA. In contrast to commonly applied methods, 3D-FRAP allows for the quantification of the intercellular transfer of small RNAs in real time, with high spatio-temporal resolution.
This protocol illustrates a safe and efficient procedure to modify CD133+ hematopoietic stem cells. The presented non-viral, magnetic polyplex-based approach may provide a basis for the optimization of therapeutic stem cell effects as well as for monitoring the administered cell product via magnetic resonance imaging.
This protocol describes the transient genetic engineering of dental stem cells extracted from the human dental follicle. The applied non-viral modification strategy may become a basis for the improvement of therapeutic stem cell products.
Presented here is a protocol for antegrade endoscopic vein harvesting from the lower leg, which can safely be introduced in routine coronary artery bypass grafting. Vein grafts present excellent graft quality following this standardized protocol with positioning of the legs, minimally invasive access to the vein, and antegrade endoscopic vein harvesting.
The formation of a proper sarcomere network is important for the maturation of iPSC-derived cardiomyocytes. We present a super resolution-based approach that allows for the quantitative evaluation of the structural maturation of stem cell derived cardiomyocytes, to improve culture conditions promoting cardiac development.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved