Glutamatergic synapses can switch from an active mode to a silent mode. We demonstrate that presynaptic activity status in dissociated culture of rodent neurons is visualized using a fixable form of the FM1-43 dye to visualize active synapses and immunostaining with vGluT-1 antibody to visualize all glutamate synapses.
The protocol describes a high-throughput approach to determining structures of membrane proteins using cryo-electron tomography and 3D image processing. It covers the details of specimen preparation, data collection, data processing and interpretation, and concludes with the production of a representative target for the approach, the HIV-1 Envelope glycoprotein. These computational procedures are designed in a way that enables researchers and students to work remotely and contribute to data processing and structural analysis.
Retrograde transport of fluorescent dye labels a sub-population of neurons based on anatomical projection. Labeled axons can be visually targeted in vivo, permitting extracellular recording from identified axons. This technique facilitates recording when neurons cannot be labeled through genetic manipulation or are difficult to isolate using 'blind' in vivo approaches.
We demonstrate variations of the extracellular multi-unit recording technique to characterize odor-evoked responses in the first three stages of the invertebrate olfactory pathway. These techniques can easily be adapted to examine ensemble activity in other neural systems as well.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved