JoVE Logo

Sign In

University of Tromsø

2 ARTICLES PUBLISHED IN JoVE

image

JoVE Journal

Quantitative Analysis of Autophagy using Advanced 3D Fluorescence Microscopy
Chun A. Changou 1,2, Deanna L. Wolfson 2, Balpreet Singh Ahluwalia 2,3, Richard J. Bold 4,5, Hsing-Jien Kung 5,6, Frank Y.S. Chuang 1,2,5
1Department of Biochemistry and Molecular Medicine, University of California, Davis , 2NSF Center for Biophotonics Science & Technology, University of California, Davis , 3University of Tromsø, 4Department of Surgery (Division of Surgical Oncology), University of California, Davis , 5UC Davis Comprehensive Cancer Center, University of California, Davis , 6Department of Biological Chemistry, University of California, Davis

Autophagy is a ubiquitous process that enables cells to degrade and recycle proteins and organelles. We apply advanced fluorescence microscopy to visualize and quantify the small, but essential, physical changes associated with the induction of autophagy, including the formation and distribution of autophagosomes and lysosomes, and their fusion into autolysosomes.

image

JoVE Core

High-pressure, High-temperature Deformation Experiment Using the New Generation Griggs-type Apparatus
Jacques Précigout 1, Holger Stünitz 1,2, Yves Pinquier 3, Rémi Champallier 1, Alexandre Schubnel 3
1Institut des Sciences de la Terre d’Orléans (ISTO), UMR 7327, CNRS-BRGM, Université d’Orléans, 2Department of Geology, University of Tromsø, 3Laboratoire de Géologie, UMR 8538, CNRS, Ecole Normale Supérieure (ENS Paris)

Rock deformation needs to be quantified at high pressure. A description of the procedure to perform deformation experiments in a newly designed solid-medium Griggs-type apparatus is here given. This provides technological basis for future rheological studies at pressures up to 5 GPa.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved