Transcranial direct current stimulation (tDCS) is an established technique to modulate cortical excitability1,2. It has been used as an investigative tool in neuroscience due to its effects on cortical plasticity, easy operation, and safe profile. One area that tDCS has been showing encouraging results is pain alleviation 3-5.
Primary hepatocytes provide a valuable tool to evaluate biochemical, molecular, and metabolic functions in a physiologically relevant experimental system. We describe a reliable protocol for rat in situ liver perfusion, which consistently generates viable hepatocytes up to 1.0 × 108 cells per preparation with cell viability between 88 ~ 96%.
Muscle function measurements contribute to the evaluation of potential therapeutics for muscle pathology, as well as to the determination of mechanisms underlying physiology of this tissue. We will demonstrate the preparation of the extensor digitorum longus and diaphragm muscles for functional testing. Protocols for isometric and eccentric contractions will be shown, as well as differences in results between dystrophic muscles, representing a pathological state, and wildtype muscles.
High-definition transcranial direct current stimulation (HD-tDCS), with its 4x1-ring montage, is a noninvasive brain stimulation technique that combines both the neuromodulatory effects of conventional tDCS with increased focality. This article provides a systematic demonstration of the use of 4x1 HD-tDCS, and the considerations needed for safe and effective stimulation.
In this study, the authors report for the first time a novel 3D-Immersive & Interactive Neuronavigation (3D-IIN) through the impact of a spontaneous migraine headache attack in the μ-opioid system of a patient's brain in vivo.
An Achilles tenotomy and burn injury model of heterotopic ossification allows for the reliable study of trauma induced ectopic bone formation without the application of exogenous factors.
Here, we present a detailed protocol to detect and quantify protein levels during craniofacial morphogenesis/pathogenesis by immunostaining using mouse craniofacial tissues as examples. In addition, we describe a method for preparation and cryosectioning of undecalcified hard tissues from young mice for immunostaining.
Perineural invasion is an aggressive phenotype for head and neck squamous cell carcinomas and other tumors. The chick chorioallantoic membrane model has been used for studying angiogenesis, cancer invasion, and metastasis. Here we demonstrate how this model can be utilized to assess perineural invasion in vivo.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved