Sign In

Lawrence Berkeley Laboratory

2 ARTICLES PUBLISHED IN JoVE

image

Biology

Rapid Identification of Chemical Genetic Interactions in Saccharomyces cerevisiae
David Dilworth 1, Christopher J. Nelson 1
1Department of Biochemistry and Microbiology, University of Victoria

Here we present a cost-effective method for defining chemical-genetic interactions in budding yeast. The approach is built on fundamental techniques in yeast molecular biology and is well suited for the mechanistic interrogation of small to medium collections of chemicals and other media environments.

image

Biochemistry

Isolation of Histone from Sorghum Leaf Tissue for Top Down Mass Spectrometry Profiling of Potential Epigenetic Markers
Mowei Zhou 1, Shadan H. Abdali 1, David Dilworth 2, Lifeng Liu 2, Benjamin Cole 2, Neha Malhan 1, Amir H. Ahkami 1, Tanya E. Winkler 1, Joy Hollingsworth 3, Julie Sievert 3, Jeff Dahlberg 3, Robert Hutmacher 4,5, Mary Madera 6, Judith A. Owiti 6, Kim K. Hixson 1, Peggy G. Lemaux 6, Christer Jansson 1, Ljiljana Paša-Tolić 1
1Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 2DOE-Joint Genome Institute, Lawrence Berkeley Laboratory, 3Kearney Agricultural Research and Extension Center, University of California Agriculture and Natural Resources, 4West Side Research and Extension Center, University of California, 5Department of Plant Sciences, University of California, Davis, 6Department of Plant and Microbial Biology, University of California, Berkeley

The protocol has been developed to effectively extract intact histones from sorghum leaf materials for profiling of histone post-translational modifications that can serve as potential epigenetic markers to aid engineering drought resistant crops.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved