Atoms generally contain the same number of positively and negatively charged particles, protons, and electrons. Hence, they are electrically neutral. However, the centers of the positive and negative charges do not always coincide. In such a scenario, the electric field of an atom may not be zero.

A separation of the positive and negative charges can lead to a weak, remnant effect of the positive and negative charges. The expectation is that the more the distance between the positive and negative charges, the more the electric field will be. The exact calculation can be facilitated by considering a positive and negative charge of equal magnitude separated by a distance. Such a system is called a dipole.

Symmetry is a powerful tool for calculating electric fields. When a system looks the same under a particular operation on it, it is said to be symmetric. As far as the electric field perpendicular to the separation direction is considered, an equidistant point from the two charges is symmetric under the operation: swapping the two charges. That is, if the two charges were swapped, the electric field in this direction would remain the same.

However, the field is not symmetrical in the direction of joining the two charges. The magnitudes and directions, both being the same, reinforce each other. Thus, at any point along the plane, there is a resulting electric field along the separation direction, directed towards the negative charge. As expected, its magnitude is proportional to the individual charges and the separation distance.

If the point is far removed from both the charges, the magnitude is approximately inversely proportional to the cube of its distance from the center of the charges. Thus, the dependence is stronger than the magnitude of the field due to individual charges. That is, it is a weaker field. That is why electrical forces appear weaker, although comparatively stronger than gravitational forces. They fall off sharply with the distance between objects.

Tags
Electric FieldEqual ChargesOpposite ChargesProtonsElectronsElectrically NeutralDipoleCharge SeparationSymmetryElectric Field CalculationMagnitudes And DirectionsResulting Electric FieldSeparation DistanceGravitational Forces

Dal capitolo 22:

article

Now Playing

22.9 : Electric Field of Two Equal and Opposite Charges

Electric Charges and Fields

5.4K Visualizzazioni

article

22.1 : Cariche elettriche

Electric Charges and Fields

16.6K Visualizzazioni

article

22.2 : Fonti e proprietà della carica elettrica

Electric Charges and Fields

9.1K Visualizzazioni

article

22.3 : Conduttori e isolanti

Electric Charges and Fields

7.6K Visualizzazioni

article

22.4 : Conduttori di carica per induzione

Electric Charges and Fields

7.2K Visualizzazioni

article

22.5 : Legge di Coulomb

Electric Charges and Fields

8.1K Visualizzazioni

article

22.6 : La legge di Coulomb e il principio di sovrapposizione

Electric Charges and Fields

8.0K Visualizzazioni

article

22.7 : Confronto tra forze elettriche e gravitazionali

Electric Charges and Fields

2.2K Visualizzazioni

article

22.8 : Campo elettrico

Electric Charges and Fields

9.8K Visualizzazioni

article

22.10 : Distribuzioni di carica continua

Electric Charges and Fields

6.5K Visualizzazioni

article

22.11 : Campo elettrico di una carica in linea continua

Electric Charges and Fields

1.3K Visualizzazioni

article

22.12 : Campo elettrico di un disco carico

Electric Charges and Fields

1.8K Visualizzazioni

article

22.13 : Linee di campo elettrico

Electric Charges and Fields

6.8K Visualizzazioni

article

22.14 : Proprietà delle linee di campo elettrico

Electric Charges and Fields

7.2K Visualizzazioni

article

22.15 : Dipoli elettrici e momento di dipolo

Electric Charges and Fields

4.7K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati