È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.

In questo articolo

  • Riepilogo
  • Abstract
  • Introduzione
  • Protocollo
  • Risultati
  • Discussione
  • Divulgazioni
  • Riconoscimenti
  • Materiali
  • Riferimenti
  • Ristampe e Autorizzazioni

Riepilogo

Questo lavoro presenta un protocollo dettagliato per la microfabbricazione di sbalzi di α quarzo nanostrutturati su un substrato tecnologico SILICON-On-Insulator (SOI) a partire dalla crescita epitassiale del film di quarzo con il metodo di rivestimento a tuffo e quindi nanostrutturazione del film sottile tramite litografia nanoimprint.

Abstract

In questo lavoro, mostriamo un percorso ingegneristico dettagliato del primo microcantilever a base di quarzo epitassiale piezoelettrico nanostrutturato. Spiegheremo tutti i passaggi del processo a partire dal materiale alla fabbricazione del dispositivo. La crescita epitassiale del film di α quarzo su substrato SOI (100) inizia con la preparazione di un sol-gel di silice drogato stronzio e continua con la deposizione di questo gel nel substrato SOI in forma di film sottile utilizzando la tecnica di dip-coating in condizioni atmosferiche a temperatura ambiente. Prima della cristallizzazione del film di gel, la nanostrutturazione viene eseguita sulla superficie del film mediante litografia nanoimprint (NIL). La crescita del film epitassiale viene raggiunta a 1000 °C, inducendo una perfetta cristallizzazione della pellicola di gel fantasia. La fabbricazione di dispositivi a sbalzi di cristallo di quarzo è un processo in quattro fasi basato su tecniche di microfabbricazione. Il processo inizia con la sagomatura della superficie del quarzo, quindi la deposizione metallica per gli elettrodi lo segue. Dopo aver rimosso il silicone, il cantilever viene rilasciato dal substrato SOI eliminando SiO2 tra silicio e quarzo. Le prestazioni del dispositivo vengono analizzate dal videometro laser senza contatto (LDV) e dalla microscopia a forza atomica (AFM). Tra le diverse dimensioni del cantilever incluse nel chip fabbricato, il cantilever nanostrutturato analizzato in questo lavoro ha mostrato una dimensione di 40 μm grande e 100 μm di lunghezza ed è stato fabbricato con uno strato di quarzo a motivi geometrici di 600 nm (diametro nanopillare e distanza di separazione rispettivamente di 400 nm e 1 μm) coltivato in modo epitassiale su uno strato di dispositivo Si spesso 2 μm. La frequenza di risonanza misurata era di 267 kHz e il fattore di qualità stimato, Q, dell'intera struttura meccanica era Q ~ 398 in condizioni di basso vuoto. Abbiamo osservato lo spostamento lineare dipendente dalla tensione del sbalzino con entrambe le tecniche (ad esempio, misurazione del contatto AFM e LDV). Pertanto, dimostrando che questi dispositivi possono essere attivati attraverso l'effetto piezoelettrico indiretto.

Introduzione

I nanomateriali di ossido con proprietà piezoelettriche sono fondamentali per progettare dispositivi come sensori MEMS o mietitrici di micro energiao stoccaggio 1,2,3. Con l'aumentare dei progressi della tecnologia CMOS, l'integrazione monolitica di pellicole piezoelettriche e nanostrutture epitassiali di alta qualità nel silicio diventa un argomento di interesse per espandere nuovi nuovi dispositivi4. Inoltre, è necessario un maggiore controllo della miniaturizzazione di questi dispositivi per ottenere alte prestazioni5,

Protocollo

1. Preparazione della soluzione

  1. Preparare una soluzione contenente ortosilicato tetraetilico preidrolizzato (TEOS) 18 ore prima della produzione delle pellicole di gel in una cappa fumi in cui sono posizionati un bilanciere di laboratorio e un agitatore magnetico.
    1. Aggiungere 0,7 g di etere esadecile di polietilene glicole (Brij-58) e 23,26 g di etanolo in una bottiglia da 50 ml e chiudere il coperchio della bottiglia e mescolarlo fino a quando il Brij non è completamente sciolto.
    2. Aggiungere 1,5 g di HCl 35% nel pallone nel passaggio 1.1.1, chiuderlo e mescolare per 20 s.
    3. Aggiungere 4,22 g di TEOS al pallone nel passaggio 1.1.2, ....

Risultati

L'avanzamento della sintesi dei materiali e della fabbricazione del dispositivo (cfr. figura 1) è stato descritto schematicamente monitorando diversi passaggi con immagini reali. Dopo i processi di microfabbricazione, abbiamo osservato l'aspetto dei cantilever nanostrutturati utilizzando le immagini di microscopia elettronica a scansione di emissione di campo (FEG-SEM)(Figura 2a-c). La diffrazione a micro raggi X 2D controllava la cristallinit?.......

Discussione

Il metodo presentato è una combinazione di approcci dal basso verso l'alto e dall'alto verso il basso per produrre micro-cantilever al quarzo piezoelettrico nanostrutturati sulla tecnologia Si. Quartz /Si-MEMS offre importanti vantaggi rispetto al quarzo sfuso in termini di dimensioni, consumo energetico e costi di integrazione. Infatti, il quarzo epitassiale/Si MEMS sono prodotti con processi compatibili con CMOS. Ciò potrebbe facilitare la futura fabbricazione di soluzioni a chip singolo per dispositivi multifrequenz.......

Divulgazioni

Gli autori non hanno nulla da rivelare.

Riconoscimenti

Questo lavoro è stato finanziato dal Consiglio europeo della ricerca (CER) nell'ambito del programma di ricerca e innovazione Horizon 2020 dell'Unione europea (n. 803004).

....

Materiali

NameCompanyCatalog NumberComments
AcetoneHoneywell Riedel de HaënUN 1090
AZnLOF 2020 negative resistMicrochemicalsUSAW176488-1BLO
AZnLOF 2070 negative resistMicrochemicalsUSAW211327-1FK6
AZ 726 MIF developerMerckDEAA195539
BOE (7:1)TechnicAF 87.5-12.5
Brij-58Sigma9004-95-9
ChromiumNeycoFCRID1T00004N-F53-062317/FC79271
Dip Coater ND-R 11/2 FNadetecND-R 11/2 F
Hydrogen peroxide solution 30%Carlo Erka Reagents DasitGroupUN 2014
H2SO4Honeywell FlukaUN 1830
Isopropyl alcoholHoneywell Riedel de HaënUN 1219
Mask alignerEV GroupEVG620
PG removerMicroChem18111026
PlatinumNeycoINO272308/F14508
PTFE based containerTeflon
Reactive ion etching (RIE)CorialICP Corial 200 IL
SEMFEGHitachiSu-70
SOI substrateUniversity WaferID :3213
Strontium chloride hexahydrateSigma-Aldrich10025-70-4
SYLGARD TM 184 Silicone Elastomer KitDow.000000840559
SYLGARD TM 184 Silicone Elastomer Curring AgentDow.000000840559
Tetraethyl orthosilicateAldrich78-10-4
Tubular FurnaceCarbolitePTF 14/75/450
VibrometerPolytecOFV-500D
2D XRDBrukerD8 DiscoverEquipped with a Eiger2 R 500 K 2D detector

Riferimenti

  1. Vila-Fungueiriño, J. M., et al. Integration of functional complex oxide nanomaterials on silicon. Frontiers in Physics. 3, (2015).
  2. Carretero-Genevrier, A., et al. Direct mono....

Ristampe e Autorizzazioni

Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE

Richiedi Autorizzazione

Esplora altri articoli

IngegneriaNumero 164litografia nanoimprint NILnanostrutturata quarzosubstrato SOIpiezoelettricomicrofabbricazionelitografiaincisionesbalzoMEMS

This article has been published

Video Coming Soon

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati