Accedi

È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes obtaining the pressure-volume relationship through transesophageal pacing, which serves as a valuable tool in evaluating diastolic function in mouse models of heart failure.

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a condition characterized by diastolic dysfunction and exercise intolerance. While exercise-stressed hemodynamic tests or MRI can be used to detect diastolic dysfunction and diagnose HFpEF in humans, such modalities are limited in basic research using mouse models. A treadmill exercise test is commonly used for this purpose in mice, but its results can be influenced by body weight, skeletal muscle strength, and mental state. Here, we describe an atrial-pacing protocol to detect heart rate (HR)-dependent changes in diastolic performance and validate its usefulness in a mouse model of HFpEF. The method involves anesthetizing, intubating, and performing pressure-volume (PV) loop analysis concomitant with atrial pacing. In this work, a conductance catheter was inserted via a left ventricular apical approach, and an atrial pacing catheter was placed in the esophagus. Baseline PV loops were collected before the HR was slowed with ivabradine. PV loops were collected and analyzed at HR increments ranging from 400 bpm to 700 bpm via atrial pacing. Using this protocol, we clearly demonstrated HR-dependent diastolic impairment in a metabolically induced HFpEF model. Both the relaxation time constant (Tau) and the end-diastolic pressure-volume relationship (EDPVR) worsened as the HR increased compared to control mice. In conclusion, this atrial pacing-controlled protocol is useful for detecting HR-dependent cardiac dysfunctions. It provides a new way to study the underlying mechanisms of diastolic dysfunction in HFpEF mouse models and may help develop new treatments for this condition.

Introduction

Heart failure represents a leading cause of hospitalization and death across the globe, and heart failure with preserved ejection fraction (HFpEF) accounts for around 50% of all heart failure diagnoses. HFpEF is characterized by diastolic dysfunction and impaired exercise tolerance, and the associated hemodynamic abnormalities, such as diastolic dysfunction, can be clearly detected through exercise-stressed hemodynamic testing or MRI scans1,2.

In experimental models, however, available modalities for assessing the physiological abnormalities related to HFpEF are limited

Protocol

This animal protocol was approved by the Institutional Animal Care and Use Committee and followed the regulations for animal experiments and related activities at the University of Tokyo. For the present study, 8-12 week old male C57/Bl6J mice were used. The animals were obtained from a commercial source (see the Table of Materials). A model of HFpEF was established by administering a high-fat diet for 15 weeks in conjunction with NG-nitro-L-arginine methyl ester, as described previously

Representative Results

The baseline PV loop data are displayed in Figure 1 and Table 1. At baseline (in the absence of pacing), there were no significant differences in diastolic parameters such as the relaxation time constant (Tau), the minimum rate of pressure change (dP/dt min), and EDPVR between the control and HFpEF mice. However, the HFpEF mice exhibited higher blood pressure and arterial elastance (Ea), as shown in Figure 1, and demonstrated a typical mountain-.......

Discussion

We present a methodology to assess pressure-volume relationships with the application of transesophageal pacing. Exercise intolerance is one of the key characteristics of HFpEF, yet there are no techniques available for the evaluation of cardiac function in mice during exercise. Our pacing protocol offers a valuable tool for detecting diastolic dysfunction, which may not be apparent under resting conditions.

To achieve a PV loop of accurate and consistent quality, the following steps must be m.......

Acknowledgements

This work was supported by research grants from the Fukuda Foundation for Medical Technology (to E.T. and G. N.) and the JSPS KAKENHI Scientific Research Grant-in-Aid 21K08047 (to E.T.).

....

Materials

NameCompanyCatalog NumberComments
2-0 silk suture, sterlieAlfresa Pharma Corporation, Osaka, Japan62-9965-57Surgical Supplies
2-Fr tetrapolar electrode catheterFukuda Denshi, Japan and UNIQUE MEDICAL, Japancustom-madeSurgical Supplies
Albumin Bovine SerumNacalai Tesque, Inc., Kyoto, Japan01859-47Miscellaneous
C57/BI6J mouseJackson Laboratoryanimals
Conductance catheterMillar Instruments, Houston, TXPVR 1035
Electrical cautery, Electrocautery Knife Kitellman-Japan,Osaka, Japan1-1861-21Surgical Supplies
EtomidateTokyo Chemical Industory Co., Ltd., Tokyo JapanE0897Anesthetic
Grass Instrument S44G Square Pulse StimulatorAstro-Med, West Warwick, RIPacing equipment
IsofluraneViatris Inc., Tokyo, Japan8803998Anesthetic
IvabradineTokyo Chemical Industory Co., Ltd., Tokyo JapanI0847Miscellaneous
LabChart softwareADInstruments, Sydney, AustraliaLabChart 7Hemodynamic equipment
MPVS UltraMillar Instruments, Houston, TXPL3516B49Hemodynamic equipment
Pancronium bromideSigma Aldrich Co., St. Louis, MO15500-66-0Anesthetic
PE10 polyethylene tubeBio Research Center  Co. Ltd., Tokyo, Japan62101010Surgical Supplies
PowerLab 8/35ADInstruments, Sydney, AustraliaPL3508/PHemodynamic equipment
PVR 1035Millar Instruments, Houston, TX842-0002Hemodynamic equipment
Urethane (Ethyl Carbamate)Wako Pure Chemical Industries, Ltd., Osaka, Japan050-05821Anesthetic
Vascular Flow ProbeTransonic, Ithaca, NYMA1PRBSurgical Supplies

References

  1. Backhaus, S. J. Exercise stress real-time cardiac magnetic resonance imaging for noninvasive characterization of heart failure with preserved ejection fraction. Circulation. 143 (15), 1484-1498 (2021).
  2. Borlaug, B. A., Nishimura, R. A., Sorajja, P., Lam, C. S. P., Redfield, M. M.

Explore More Articles

Heart Rate dependent Diastolic FunctionMurine Heart Failure ModelsAtrial Pacing ProtocolPressure volume Loop AnalysisHeart Failure With Preserved Ejection Fraction HFpEFDiastolic DysfunctionRelaxation Time Constant TauEnd diastolic Pressure volume Relationship EDPVR

This article has been published

Video Coming Soon

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati