Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

An easy-to-use RNA pull-down protocol is designed for the identification of RNAs engaged in direct RNA/RNA interaction with a long non-coding RNA. The protocol uses psoralen as a fixative to cross-link only RNA/RNA interactions and provides the whole direct RNA interactome of a long non-coding RNA when coupled with RNA sequencing.

Abstract

The growing role attributed nowadays to long non-coding RNAs (lncRNA) in physiology and pathophysiology makes it crucial to characterize their interactome by identifying their molecular partners, DNA, proteins and/or RNAs. The latter can interact with lncRNA through networks involving proteins, but they can also be engaged in direct RNA/RNA interactions. We, therefore, developed an easy-to-use RNA pull-down procedure that allowed identification of RNAs engaged in direct RNA/RNA interaction with a lncRNA using psoralen, a molecule that cross-links only RNA/RNA interactions. Bioinformatics modeling of the lncRNA secondary structure allowed the selection of several specific antisense DNA oligonucleotide probes with a strong affinity for regions displaying a low probability of internal base pairing. Since the specific probes that were designed targeted accessible regions throughout the length of the lncRNA, the RNA-interaction zones could be delineated in the sequence of the lncRNA. When coupled with a high throughput RNA sequencing, this protocol can be used for the whole direct RNA interactome studies of a lncRNA of interest.

Introduction

Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides in length. Their number is ever increasing, more than 58,000 in humans. Furthermore, their crucial role in physiology and pathophysiology makes it essential to characterize their molecular partners that allow them to implement their regulatory functions. Actually, one approach to understand the functions of lncRNAs is the detection of the interacting molecular partners of each lncRNA.

The molecular targets of lncRNAs can be DNA, proteins, or RNAs, and various techniques have been developed to identify them. In this regard, the identification o....

Protocol

1. Probe design

  1. Generate the secondary structure of the lncRNA using a specialized free web server software : RNAstructure software7 or Vienna RNA web suite8. Select regions that display a low probability of internal base pairing and design 25 bases long antisense oligonucleotide probes for different regions of this lncRNA.
  2. Check all the oligonucleotides designed with the free academic software, AmplifX (https://inp.univ-amu.fr/en/amplifx-manage-test-a.......

Representative Results

The elucidation of the lncRNA interactome i.e., the cellular components that interact with lncRNAs, proteins, RNA, and DNA, is of key importance for understanding the functions of lncRNAs. Various techniques have been developed to characterize the lncRNA interactome, including RIP, CHART, ChIRP, and RNA pull-down. While the latter has been shown to be powerful in identifying RNA targets of lncRNAs, these procedures do not indicate whether the RNA partners interact indirectly via a protein network or directly via direct R.......

Discussion

Numerous lncRNAs carry out their function through complementary base pairing to mRNAs. It is, therefore, important to develop procedures that allow characterizing the direct RNA interactome of the lncRNAs. Therefore, a procedure was developed that combines the use of psoralen as cross-linking reagent with RNA pull-down technique.

In the RNA pull-down protocol described, the design and the selection of the antisense DNA biotinylated oligonucleotide probes are based on bioinformatics modeling of.......

Acknowledgements

This work was supported by Aix-Marseille University and Centre National Recherche Scientifique and funded by a grant from Sandoz Laboratories.

Funding for open access charge: Aix-Marseille University and Centre National Recherche Scientifique

....

Materials

NameCompanyCatalog NumberComments
4′-Aminomethyltrioxsalen hydrochlorideSigmaA4330Crosslinker reagent
Bioruptor PlusDiagenodeB01020001Sonicator
Biotynilated probesIDTOligonucleotide probes
CFX96 Real Time SystemBioRad4351107qPCR apparatus
DNA OlignucleotidesIDTPrimers for qPCR
Dynabeads My OneThermo-Fisher65001Magnetic streptavidin beads
FormamideThermo-Fisher15515-026Formamide
iTaq Universal SYBR Green SupermixBioRad1725124qPCR reagent
Proteinase KSigmaP2308Proteinase K
RNA to DNAThermo-Fisher4387405Reverse transcription kit
RNA XS purification kitMacherey-Nagel740902RNA purificationkit
RNAseOUTThermo-Fisher10777-019RNAse inhibitor
Tube RotatorStuartSB2Eppendorf tube rotator
UV Stratalinker 1800Stratagene#400072UV crosslinker

References

  1. Chen, L. -. L., Zhao, J. C. functional analysis of long non-coding RNAs in development and disease. Systems Biology of RNA Binding Proteins. 825, 129-158 (2014).
  2. Simon, M. D. capture hybridization analysis of rna targets (CHART)....

Explore More Articles

RNA RNA InteractionLong Non coding RNALncRNA InteractomePsoralenRNA Pull downAntisense DNA Oligonucleotide ProbesSecondary Structure ModelingHigh throughput RNA Sequencing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved