JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Neuroscience

High-Quality Seizure-Like Activity from Acute Brain Slices Using a Complementary Metal-Oxide-Semiconductor High-Density Microelectrode Array System

Published: September 27th, 2024

DOI:

10.3791/67065

1Department of Cell Biology and Physiology, Brigham Young University, 2Neuroscience Center, Brigham Young University, 3Department of Statistics, Brigham Young University, 4Department of Biology, Brigham Young University, 5Department of Physics and Astronomy, Brigham Young University
* These authors contributed equally

Abstract

Complementary metal-oxide-semiconductor high-density microelectrode array (CMOS-HD-MEA) systems can record neurophysiological activity from cell cultures and ex vivo brain slices in unprecedented electrophysiological detail. CMOS-HD-MEAs were first optimized to record high-quality neuronal unit activity from cell cultures but have also been shown to produce quality data from acute retinal and cerebellar slices. Researchers have recently used CMOS-HD-MEAs to record local field potentials (LFPs) from acute, cortical rodent brain slices. One LFP of interest is seizure-like activity. While many users have produced brief, spontaneous epileptiform discharges using CMOS-HD-MEAs, few users reliably produce quality seizure-like activity. Many factors may contribute to this difficulty, including electrical noise, the inconsistent nature of producing seizure-like activity when using submerged recording chambers, and the limitation that 2D CMOS-MEA chips only record from the surface of the brain slice. The techniques detailed in this protocol should enable users to consistently induce and record high-quality seizure-like activity from acute brain slices with a CMOS-HD-MEA system. In addition, this protocol outlines the proper treatment of CMOS-HD-MEA chips, the management of solutions and brain slices during experimentation, and equipment maintenance.

Explore More Videos

Neuroscience

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved