Abstract
Neuroscience
* These authors contributed equally
Focused ultrasound neuromodulation (FUN) represents a promising approach for non-invasive perturbation of neuronal circuits at deep brain regions. It is compatible with most of the existing modalities for monitoring brain functions in vivo. Integration with brain function recording modalities not only enables us to address orders and disorders of specific brain functions with closed-loop feedback but also provides us with mechanistic insights about FUN itself. Here, we provide a modified, simple, dependable, and robust protocol for the simultaneous application of FUN and fiber photometry GCaMP6s fluorescence recording in free-moving mice. This involves the fabrication of a well-sized single transducer and its temporary placement on the mice, along with the secure fixation of a fiber optical implant to facilitate the smooth passage of the transducer. The combination of FUN and fiber photometry provides for the optical recording of neural circuitry responses upon FUN in real-time in deep brain regions. To demonstrate the efficiency of this protocol, Thy1-GCaMP6s mice were used as an example to record the neuroactivity in the anterior thalamic nucleus during FUN while the mice are freely moving. We believe that this protocol can promote the widespread use of FUN in both the neuroscience field and the biomedical ultrasound field.
Explore More Videos
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved