サインイン

RNA sequencing, or RNA-Seq, is a high-throughput sequencing technology used to study the transcriptome of a cell. Transcriptomics helps to interpret the functional elements of a genome and identify the molecular constituents of an organism. Additionally, it also helps in understanding the development of an organism and the occurrence of diseases.

Before the discovery of RNA-seq, microarray-based methods and Sanger sequencing were used for transcriptome analysis. However, while microarray-based techniques had drawbacks such as limited coverage and dependency on existing knowledge of the genome, Sanger sequencing has limitations, such as low-throughput, high cost, and inaccurate results. In contrast, RNA-seq is a next-generation sequencing (NGS) technology that provides relatively higher coverage and higher throughput. It also generates additional data that can help discover novel transcripts, understand allele-specific information, and identify alternatively spliced genes.

The RNA-seq process can be divided into several steps. The first step is the extraction and isolation of RNA of interest from the sample, followed by the conversion of this RNA to complementary DNA. This ensures the molecule's stability, easy handling, and ability to be put into an NGS workflow. Next, sequences known as adapters are attached to the DNA fragments to enable sequencing. The most widely used NGS platforms for RNA-seq include SOLiD, Ion Torrent, and HiSeq. The depth to which the library is sequenced varies depending on the end-goal of the experiment. For example, sequencing can involve single-read or paired-end sequencing methods. Single-read sequencing that sequences the DNA only from one end is a cheaper and faster technique, while the paired-end method that involves sequencing from both ends is more expensive and time-consuming. Additionally, additional information about which DNA strand was transcribed can also be retained through a strand-specific protocol.

The sequencing data is then aligned to a reference genome and used to generate a corresponding RNA sequence map. Depending on the nature of the analysis, different bioinformatic tools can be used to process data. For example, BitSeq and RSEM can help quantify expression level, whereas MISO can be used to quantify alternatively spliced genes.

タグ
RNA seqRNA SequencingTranscriptomeHigh throughput SequencingFunctional ElementsMolecular ConstituentsTranscriptomicsOrganism DevelopmentDisease OccurrenceMicroarray based MethodsSanger SequencingNext generation Sequencing NGSCoverageThroughputNovel TranscriptsAllele specific InformationAlternatively Spliced GenesExtraction And Isolation Of RNAComplementary DNA cDNANGS WorkflowAdaptersSOLiDIon TorrentHiSeq

章から 15:

article

Now Playing

15.14 : RNA-seq

DNAとRNAを研究する

9.5K 閲覧数

article

15.1 : 組換えDNA

DNAとRNAを研究する

16.4K 閲覧数

article

15.2 : DNA単離

DNAとRNAを研究する

36.8K 閲覧数

article

15.3 : DNAアガロースゲル電気泳動

DNAとRNAを研究する

91.3K 閲覧数

article

15.4 : DNAプローブのラベリング

DNAとRNAを研究する

8.0K 閲覧数

article

15.5 : サザンブロット

DNAとRNAを研究する

17.3K 閲覧数

article

15.6 : DNAマイクロアレイ

DNAとRNAを研究する

16.9K 閲覧数

article

15.7 : 相補的DNA

DNAとRNAを研究する

5.4K 閲覧数

article

15.8 : FISH - 蛍光 In-situ ハイブリダイゼーション

DNAとRNAを研究する

18.7K 閲覧数

article

15.9 : PCR - ポリメラーゼ連鎖反応

DNAとRNAを研究する

80.0K 閲覧数

article

15.10 : リアルタイムRT-PCR

DNAとRNAを研究する

55.9K 閲覧数

article

15.11 : RACE - cDNA末端の迅速な増幅

DNAとRNAを研究する

6.2K 閲覧数

article

15.12 : サンガーシーケンシング

DNAとRNAを研究する

749.7K 閲覧数

article

15.13 : 次世代シーケンシング

DNAとRNAを研究する

84.9K 閲覧数

article

15.15 : ゲノムアノテーションとアセンブリ

DNAとRNAを研究する

18.6K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved