JoVE Logo

サインイン

18.19 : Nucleophilic Aromatic Substitution: Elimination–Addition

Simple aryl halides do not react with nucleophiles. However, nucleophilic aromatic substitutions can beforced undercertain conditions, such as high temperatures or strong bases. The mechanism of substitution under such conditions involves the highly unstable and reactive benzyne intermediate. Benzyne contains equivalent carbon centers at both ends of the triple bond, each of whichis equally susceptible to nucleophilic attack. This 50–50 distribution of products is confirmed through isotopic labeling. The overall mechanism follows an elimination–addition pathway. A strong base generates a carbanionic center on the ring. Next, elimination of the halide produces the benzyne intermediate, which ishighly strainedand therefore extremely reactive at both ends of the triple bond. Addition of the nucleophile at either end gives the product with 50–50 distribution.

タグ

Nucleophilic Aromatic SubstitutionElimination additionAryl HalidesBenzyne IntermediateNucleophilic AttackIsotopic LabelingCarbanionic CenterHalide EliminationStrained IntermediateReactivity

PLAYLIST

Loading...
JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved