JoVE Logo

サインイン

3.6 : Weighted Mean

While taking the arithmetic, geometric, or harmonic mean of a sample data set, equal importance is assigned to all the data points. However, all the values may not always be equally important in some data sets. An intrinsic bias might make it more important to give more weightage to specific values over others.

For example, consider the number of goals scored in the matches of a tournament. While computing the average number of goals scored in the tournament, it may be more important to consider the games played in its knockout stage. The goals from the knockout stage may carry more weight than the other goals. Once a numerical estimate is assigned to this idea, the average number of goals in the tournament is calculated. Such means are called weighted means. They help us assign an intrinsic value to different elements of a data set.

Sometimes, the probability of occurrence of each element can play the role of weights. For example, if biased dice are thrown at random a few times, some numbered sides may appear more frequently than the others. The weighted mean of the numbers accounts for this bias.

タグ

Weighted MeanWeighted AverageWeighted DataWeighted ValuesImportance Of Data PointsKnockout StageProbability Of OccurrenceBiased DataUnequal Importance

章から 3:

article

Now Playing

3.6 : Weighted Mean

中心傾向の測定

4.9K 閲覧数

article

3.1 : セントラルテンデンシーとは?

中心傾向の測定

14.0K 閲覧数

article

3.2 : 算術平均

中心傾向の測定

13.3K 閲覧数

article

3.3 : 相乗平均

中心傾向の測定

3.3K 閲覧数

article

3.4 : 調和平均

中心傾向の測定

3.1K 閲覧数

article

3.5 : トリム平均

中心傾向の測定

2.8K 閲覧数

article

3.7 : 二乗平均平方根

中心傾向の測定

3.2K 閲覧数

article

3.8 : 度数分布からの平均

中心傾向の測定

15.8K 閲覧数

article

3.9 : モードとは?

中心傾向の測定

17.9K 閲覧数

article

3.10 : 中央値

中心傾向の測定

17.6K 閲覧数

article

3.11 : ミッドレンジ

中心傾向の測定

3.6K 閲覧数

article

3.12 : 歪度

中心傾向の測定

10.7K 閲覧数

article

3.13 : 歪度の種類

中心傾向の測定

11.1K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved