JoVE Logo

サインイン

16.18 : Propagation of Action Potentials

The propagation of an action potential refers to the process by which a nerve impulse, or "action potential," travels along a neuron.

Neurons (nerve cells) have a resting membrane potential, with a slightly negative charge inside compared to outside. This is maintained by ion channels, such as sodium (Na+) and potassium (K+) channels, which control the flow of ions. When a stimulus, like a touch or a signal from another neuron, triggers the neuron, sodium channels open, allowing sodium ions to rush into the neuron, causing depolarization.

If the depolarization is strong enough and reaches a certain threshold, it triggers an action potential. The initiation of an action potential occurs at the axon's beginning, or the initial segment, where a high concentration of voltage-gated Na+ channels allows a swift depolarization. As the depolarization advances along the axon, more Na+ channels open, facilitating the spread of the action potential. This is achieved as Na+ ions flow inwards, progressively depolarizing the cell membrane.

However, the Na+ channels become inactivated at peak depolarization, rendering them unopenable for a brief period, known as the absolute refractory period. As a result, any depolarization attempting to reverse direction is null, ensuring that the action potential's propagation is towards the axon terminals, thereby preserving neuronal polarity.

This propagation method applies to unmyelinated axons. In myelinated axons, the process differs. The depolarization spreads optimally due to the absence of constant Na+ channel opening along the axon segment. The precise placement of nodes ensures the membrane remains sufficiently depolarized at the next node.

Propagation in unmyelinated axons, known as continuous conduction, is slower due to the constant influx of Na+. In contrast, myelinated axons exhibit saltatory conduction - a faster method as the action potential leaps node to node, renewing the depolarized membrane. Furthermore, the speed of conduction can be influenced by the axon's diameter, a concept known as resistance.

タグ

action potentialnerve impulseneuronsresting membrane potentialion channelsdepolarizationsodium channelsthresholdvoltage gated channelsrefractory period

章から 16:

article

Now Playing

16.18 : Propagation of Action Potentials

神経系と神経組織

5.3K 閲覧数

article

16.1 : 神経系の組織

神経系と神経組織

5.6K 閲覧数

article

16.2 : 神経系の機能分割

神経系と神経組織

4.7K 閲覧数

article

16.3 : 神経系の機能

神経系と神経組織

3.3K 閲覧数

article

16.4 : ニューロン:細胞体と樹状突起

神経系と神経組織

2.7K 閲覧数

article

16.5 : ニューロン:軸索

神経系と神経組織

3.3K 閲覧数

article

16.6 : 神経組織:ニューロンの種類

神経系と神経組織

2.5K 閲覧数

article

16.7 : 神経組織:グリア細胞

神経系と神経組織

2.7K 閲覧数

article

16.8 : 神経組織:ミエリン

神経系と神経組織

2.4K 閲覧数

article

16.9 : 電気化学的グラジエントとチャネルタンパク質:概要

神経系と神経組織

2.0K 閲覧数

article

16.10 : リガンド依存性イオンチャネル

神経系と神経組織

1.7K 閲覧数

article

16.11 : 電位依存性イオンチャネル

神経系と神経組織

1.5K 閲覧数

article

16.12 : メカニカルゲートイオンチャネル

神経系と神経組織

733 閲覧数

article

16.13 : 安静時膜電位

神経系と神経組織

1.9K 閲覧数

article

16.14 : 静止電位減衰

神経系と神経組織

885 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved