JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • プロトコル
  • ディスカッション
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このビデオでは、マイクロ流体プローブを提示 1(MFP)。我々は、MFPをアセンブルする方法を詳細に説明、倒立顕微鏡上にそれをマウントして、基板の表面に対して相対的位置を合わせ、最後に緩衝溶液に浸漬基板の表面を処理するためにそれを使用する方法を示します。

要約

マイクロ流体デバイスは、アッセイは、サンプルの微量を使用して実行されるように、最近、細胞の微小環境を制御するために使用されています。マイクロフルイディクスは、一般的に導入し、限られたボリューム内で、細胞の場合で培養可能なサンプルに、その使用を制限する閉じたマイクロチャネルに関連付けられています。一方、システムをmicropipettingと特にシンク、ソース、もう一つとして1つのピペットの行為プッシュプルのセットアップを使用して、局所的に細胞と表面を灌流するために使用されているが、フローの閉じ込めは、三次元では困難である。また、ピペットは壊れやすいと位置に困難であり、したがって、スタティック設定だけで使用されます。

マイクロプローブ(MFP)は、クローズドマイクロ流体チャネルの建設によって課されると代わりにマイクロ流体システムにサンプルを囲むの、マイクロ流体の流れを直接試料に配信できる、とMFPを使用して、サンプル全体でスキャンされた制約を回避することができます。 。注入と吸引開口部は、隙間に注入されたマイクロジェットが周囲の液体の流体力によって閉じ込めと完全に他の開口部に戻って吸引されるように互いのメートル数十内に位置しています。マイクロジェットは、基板表面全体にフラッシュされ、ローカライズされた堆積/表面全体にプローブを走査することによって広い範囲で使用可能な試薬の配信のための精密なツールを提供することができます。このビデオでは、マイクロ流体プローブ1(MFP)を提示する。我々は、MFPをアセンブルする方法を詳細に説明し、倒立顕微鏡上にそれをマウントして、基板表面からの相対位置を合わせ、そして最終的にバッファーに浸漬基板表面を処理するためにそれを使用する方法を示します。

プロトコル

1。プローブヘッド(ビデオには示されていないプロセス)の微細加工

  1. 1μmの厚さの熱SiO2の層と525μmの厚さのシリコンウェーハ2、直径4インチは、、4000rpmで45秒フォトレジスト(PR)とspincoatedている。
  2. ウェーハは、DIで開発し、すすぎ、50秒のために110℃でプリベークし、5秒間すべての要素を(ポートとマイクロチャネル)を搭載したマスクを介して公開されます。
  3. 発見されたSiO2を≈15分(SiO2のがエッチングされた基板のディウェッティングは、エッチングの完了を示す)でフッ化水素酸(BHF)ソリューションをバッファ1:07にエッチング除去する。 O2プラズマまたはアセトンは灰に使用したり、残りのPRを除去しています。
  4. 第二PR層は≈10μmである[31]の太い上層をもたらし、45秒、1500rpmでスピンコートです。このPRの層の下にSiO2のパターンが表示されたままですとポートのみを搭載した第二のマスクとウェハを整列させるために使用される。
  5. 曝露とPRの開発した後、ウェハは、すすぎ、乾燥、および20分間95℃でpostbakedれる。
  6. Siウェハチャックを保護するために溶けた白蝋とサポートのウェハ上に添付されます。
  7. 誘導結合プラズマ(ICP)DRIEは3段階のプロセスでウェーハトポグラフィーにPRし、埋め込まれたSiO2のパターンを転送するために使用されます。
    1. DRIEは、Si(太いPRによって定義されたパターン)に≈500μmdeepポートを作成する。
    2. DRIEのマシンからウェーハをアンロードせずに、PRは、プラズマを用いて灰化されています。
    3. 露出SiO2のパターンは、50μm深さのチャネルを作成し、そしてウェハを介して充填し、ガス抜きのポートを開く、第二ドライエッチングプロセスのためのマスクとして機能します。アンロードした後、サポートのウェハは、暖かい水の流れの下で切り離されます。微細加工ウエハをアセトン、エタノール及びDIで拭きます。
  8. 個々のMFPチップはダイシングされています。
  9. PDMSのインターフェースブロックはそれぞれ2個のビア - アクセス穴 - のの1つに挿入された2つの構造化ポリ(メチルメタクリレート)(PMMA)の要素で構成さmicromould、底部を形成する研磨スチール板にキャストすることによって作製、二つの毛細血管(さ鋼板)は流体接続孔のためのプレースホルダとして機能します。 PDMSは、少なくとも1時間60℃のオーブン内で硬化させる
  10. PDMSブロックは230Wで24秒間1ミリバールで空気プラズマの両方の部分を活性化する、と自家製メカニカルアライメントエイドを使用して2つを結合することで、さいの目MFPシリコンチップに接合されている。
  11. アセンブリは、1時間の最低60℃のオーブンで債券に委ねられている

2。 MFPの組立

  1. ガスタイトガラスシリンジはに気泡が存在しないことを保証するためにプラスチック製の注射器と注射針を使用して、適切な試薬を充填する。一般的に、我々は、注射用1〜10マイクロリットルのシリンジ、及び誤嚥5-10倍のボリュームでシリンジを使用してください。
  2. 注射器は、低デッドボリュームでNanotight継手を使用してチューブをキャピラリーに接続されています。
  3. 毛細血管を記入し、顕微鏡下での気泡のためにチェックされます。
  4. MFPのチップは、毛細血管を接続する際に気泡の捕捉を防止するために緩衝液が、事前にフィールドに入力される。
  5. 毛細血管は、プローブヘッドにPDMSの接続ピースに接続されています

3。セットアップMFPの

  1. プローブヘッドは、プローブホルダーにクランプし、倒立顕微鏡上にプローブステーションに搭載されている
  2. 注射器は、高精度のシリンジポンプに配置されます。
  3. スライドガラスなどの基板は、、顕微鏡のステージに貼付されているホームメイドのホルダーに挿入されます。
  4. MFPと基板のメサの並列処理は、MFPが基板と接触させるときに表示されるニュートンリングを(干渉縞)観察することにより、ゴニオメーターのペアを使用して調整されます。接触およびリングの周波数の点は傾きの指標として役立つ。 MFPが表面に整列されている場合、単一の干渉リングが表面全体にわたって広がっている。この測定値は、MFPと基板の間の距離を校正するために提供しています。
  5. MFPと基板間のギャップは、表面のパターニングプロセスにとって重要です。基板がMFPの下にスキャンすることによって処理されるため、水平方向の配置は、マイクロメートルの精度で調整することが三マイクロメートルねじによって形成された三点支持を使用して達成されています。

4。 MFPの操作

  1. 調剤は、LabVIEWソフトウェアを介して制御されます。デバイスの操作は、眼とCCDカメラを用いて可視化される。注入:吸引率が周囲のバッファと、目的の幾何学的なフローパターンと試薬の拡散率に応じて、1:3〜1​​:10に変わります。
  2. 吸引シリンジと気泡の存在を適切に動作するかどうかをチェックするには、まず適切な吸引を開始する前に吸引シリンジで液体を注入する。
  3. ビーズのまたは蛍光トレーサーの染料の液体とモニターの流れと閉じ込めの注入を開始します。
  4. 特定のアプリケーション用のプローブを使用する、すなわち、エッチングや表面や細胞の染色、堆積させるための処理のために表面を横切ってスキャン。

ディスカッション

それは、試薬と基質の異なるタイプで使用するための(ⅱ)適応、(i)は携帯電話であり、それは(iii)の広い範囲で動作させることができるので、マイクロ流体プローブ(MFP)は、汎用性があります。

不要な泡が気泡を避けるために、フローの中断につながることができる、すべてのコンポーネントは、アセンブリの前に液体で満たされる必要があります。プローブ?...

謝辞

この作品は、フォンデルシェルシュシュールラ自然らレテクノロジーズケベック、イノベーションと健康研究(CIHR)のカナダの協会のためのカナダのfundationによって賄われていた。

資料

NameCompanyCatalog NumberComments
microfluidic connectorsUpchurch ScientificMicro- and Nano-tight fittings and sleeves
2-component manual dispenserConprotec Inc.DM400To dispense and mix PDMS mixture
LabVIEWNational InstrumentsVersion 8.0
Mechanical Convection OvenVWR international1330FM
Glass syringesHamilton Co
Capillary tubingPolymicro Technologies
Plasma ChamberTegal CorporationPlasmaline 415
Inverted MicroscopeNikon InstrumentsTE2000-E
Syringe pumpsCetonineMESYS
Sylgard 184Ellsworth Adhesives184 Sil Elast Kit
CameraPhotometricsQuantEM 512SC
Microscope stage
Microfluidic probe holder goniometersMelles Griot07GON504
Linear stageApplied Scientific InstrumentationLS-50For z-control of the MFP
Manual linear stageNewport Corp.443-4 SeriesFor x- and y- axis control of the MFP
Microscope stageApplied Scientific InstrumentationPZ-2000With x-, y- and z- control

参考文献

  1. Juncker, D., Schmid, H., Delamarche, E. . Nature Materials. 4 (8), 622-622 (2005).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

28 MEMS

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved