このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
我々は、磁気共鳴画像法(MRI)を用いて脳の機能と構造の同時分析のための斬新なアプローチを説明します。我々は、高解像度の拡散強調イメージングおよび白質繊維ラクトで脳の構造を評価する。標準的な構造のMRIとは異なり、これらの技術は、私たちが直接、脳のネットワークの機能的特性に解剖接続を関連付けることができます。
複雑な計算システムの研究は、そのような回路図のようなネットワークマップによって促進される。脳領域の満たしは、主に他の脳領域への接続によって定義されるかもしれないという機能的役割として、脳を研究するとき、そのようなマッピングは特に有益です。本稿では、小説、磁気共鳴画像法(MRI)を用いて脳の構造と機能の関係のための非侵襲的なアプローチを説明します。このアプローチは、長距離ファイバ接続と機能的画像データの構造イメージングの組み合わせは、二つの異なる認知領域、視覚的注意と顔認知に示されている。構造イメージングは、脳内白質線維路( 図1)に沿って水分子の拡散を追跡拡散強調画像(DWI)およびファイバートラクトで実施されます。これらの線維路を視覚化することによって、我々は脳の長距離結合アーキテクチャを調べることができます。結果はfavoraを比較ブライDWIは、拡散テンソル画像(DTI)の中で最も広く使われている技術の一つである。 DTIは、脳機能の詳細、解剖学的な情報モデルを構築するため、その有用性を制限し、線維路の複雑な構成を解決することができません。対照的に、我々の分析では、精度と正確さで知られている神経解剖学を再現。この利点は、データ取得の手続が一因です:方向の数が少ない( 例えば 、6または12)には多くのDTIプロトコル対策拡散しながら、我々は257の方向に拡散を評価し、拡散スペクトルイメージング(DSI)の1、2のプロトコルを採用する磁場勾配強度の範囲で。また、DSIデータは、私たちは、取得したデータを再構成するためのより洗練された方法を使用することができます。二つの実験(視覚的注意と顔認知)で、ラクトは、彼らが機能ネットワークを形成している現存の仮説を支持し、解剖学的に接続されている人間の脳の共活性領域を明らかにする。 DWIは、私たちは "サーキット·ディを作成することができますアグラム "と関心のあるネットワークの監視タスクに関連した脳活動の目的のために、個々の被検体に基づいてそれを再現。
1。 MRのデータ収集のための機器
図2と図3は、拡散MRIの取得、データの再構築、および繊維追跡に作られている選択肢の数をまとめたものです。これらの選択肢は、通常トレードオフを伴い、最良の選択は、自分の研究目的に依存するかもしれないことを覚えておいてください。たとえば、DSIとマルチシェルHARDI( 図2を参照)は、典型的には、DTIよりも高い"b値"( すなわち 、強い拡散強調)を使用します。結果として、これらの方法は、交差点や"キス"繊維( すなわち 、再び離れて湾曲する前に、単一の接線で接触して互いに向かってカーブ、繊維)を解決するために必要であるより良い角度分解能を持っています。しかし、角度分解能は、この利得はしばしばEPIデータ( 図3)の低い信号対雑音比(SNR)のコストで実現しています。研究者たちは、彼らの特定の目的のためにこのトレードオフの関連性を検討すると良いかもしれません:研究では、低方向次に、その軌跡を交差したり、他の管に平行に走っていない、いくつかの主要な線維路に焦点を当てている場合SNRの高いDTIスキャンが理想的かもしれません。下縦束のイメージングは、このようなケースを表すことがあります。研究者は、複雑な交差を通過路に従うことを希望する場合はこれとは対照的に、SNRの損失が許容帰結かもしれない。
トレードオフは、似たような頭の動き、渦電流、および非線形画像の歪みの補正を必要とする。空気鼻腔内ポケット、生理的ノイズ、およびその他の要因によって引き起こされる3磁場の不均一性の影響を受けやすくなり、; DWIのプロトコルを使用するエコープラナーイメージング( 表1を参照EPI)。これらの分野での繊維追跡結果の妥当性と信頼性を低下させる、特に下側頭葉と眼窩前頭皮質における望ましくない画像の歪み、でこれらの不均一性をもたらす。追加の歪みが渦カレンによって作成されtsは、急速なMRの勾配スイッチングの4製品。参加者の頭の動きは画質を劣化させ、負のラクトに影響を与えることができるもう一つの要因である。現在の方法は、DTIのような低b値のデータで頭の動きや画像の歪みの両方を修正することができますが、これらの方法は、DSIなどの高解像度の方法に拡張されていない。 DSIデータに画像補正方法を適用することの難しさは、上述した低SNR( 図3)に由来します。 EPIの歪みの影響を受けやすい脳領域における線維追跡するためには、低指向性のDTIや画像の歪みを補正することができるもう1つのテクニックを使用するのが最適かもしれません。脳全体の高角度分解能が望まれているなら、その一方で、研究者はDSI、HARDI、または同様の技術を使用することを選ぶかもしれません。 TUCH(2004)5秒、DSIのスキャンを通して無拡散重みを持つ研究者インターリーブT2のイメージは、例えばモーション補正(のためのベンチマークを提供することを示唆しているeeのREF。 6)。すべてのケースでは、研究者は買収時のヘッドの動きの悪影響を認識しておく必要があります:それは高度な訓練を受けた参加者を使用すると一口バー、鼻ガード、詰め物、または他のセーフガードの使用を介して移動を最小限にすることをお勧めします。
結果は、b = 300から7000までの範囲の勾配強度と、257方向拡散スペクトルイメージング(DSI)プロトコルを使用します( 表1のパラメータを参照してください)ここで紹介する。拡散スペクトルイメージング(DSI)のシーケンスは、この高解像度の拡散データを収集するために必要な特定の機能を備えた近代的なMRスキャン装置を必要とする。シーメンスティム·トリオスキャナで約43分:私たちは、このシーケンスの時間要件がかなりあることに注意してください。大規模な実証的なテストの後、我々は、これらのデータの質が持続し、スキャンコストを正当化すると感じますが、取得プロトコルを選択する際に、ユーザーが慎重にCAに対して彼らの研究目的を比較検討する必要があります参加者のpacitiesと快適。我々はまた、良質のDSIデータは、高度な取得技術7で、わずか10分で収集されていることに注意してください。
2。スキャニング手順
3。解剖学的MRIの処理
後述するようにfMRIデータとFreeSurferを使用して自動分割の表面分析については、優れた白灰白質のコントラストと高解像度のT1強調解剖画像が必要となります。この画像は、機能と拡散強調イメージングデータを分析するための共通の基準空間を提供しています。最も近代的なMRIスキャナーでは、このイメージがMPRAGE(磁化準備急速グラジエントエコー)画像と呼ぶことにする。最も近代的なMPRAGEシーケンスは単一のスキャン( 表1のパラメータ)で十分な品質のデータを提供することができます。必要に応じて、2つ以上のスキャンがセグメンテーション用グレー白質のコントラストを向上させるために平均化することができる。以下では、私たちが通常、異なるボクセルサイズと異なる起源ポイントで収集されDWIとfMRIのデータは、自動的に整列さのためにリサンプリングすることができる方法を説明しMPRAGEと同時に表示。
FreeSurferの解剖学的MRIの処理の流れの詳細な説明はFreeSurferウィキ(に掲載されていますhttp://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki ); FreeSurfer出力が複数皮質表面表現、ならびに皮質のparcellationが含まれています解剖学的特徴と皮質下構造のセグメンテーション。我々は簡単にAFNI /須磨、FSL、SPM、および他のニューロイメージングソフトウェアパッケージからツールを用いて処理することができるファイル形式に変換し、この出力をFreeSurfer出力にAFNI /須磨スクリプト@ SUMA_Make_Spec_FSを実行することをお勧めします。たとえば、画像の共同登録は、そのような3dAllineateなど、いくつかのプログラムの1つ(AFNI /須磨)で行うことができる(FSL)FLIRT、bbregister(FreeSurfer)、またはSPM Coregister機能。
4。機能的MRI(fMRI)の処理
機能的MRI分析が生成または繊維の事後選択の対象となる領域(ROI)を定義できます。任意のエコー特定のfMRI実験のために最適化されたパラメータを使用して平面画像(EPI)のパルスシーケンスを使用することができます。同様に、fMRIの処理および解析のためのソフトウェア·パッケージが多数存在し、そのようなAFNI /須磨(NIMH、NIH)の8,9、BrainVoyager(脳·イノベーション)10、FSL(FMRIB、オックスフォード大学)11、12、SPM(走査としてニューロイメージングのためのウェルカムトラストセンター、ユニバーシティ·カレッジ·ロンドン)13。 図4の"fMRIの処理と分析"の項では、AFNI /須磨ソフトウェアパッケージに基づいて、分析経路の概要を説明します。より詳細な使用方法については、我々はAFNI /須磨ウェブサイト(上の優れたチュートリアルやその他の教材を読者に参照http://afni.nimh.nih.gov )。
ファイバー·トラッキングのためのfMRI解析の最終目標は、重点が最大活性化の軌跡を見つけることがしばしばである標準機能局在解析とは異なります。良好な統計的手続きは、事前に統計的なコントラストのアルファレベルを指定するために研究が必要ですが、研究者は統計的しきい値の選択が機能的活性化の空間的な広がりに影響を及ぼし、その結果、ファイバ終端のフィールドの範囲になるという事実を考慮する必要があります。
5。拡散強調画像データの処理
拡散強調画像は、多くの異なるcombinatiを包含する、白質のイメージング技術の総称であり、データ収集と再構成法のアドオン。おそらく、拡散テンソル画像(DTI)17、18、とも呼ばれる、最も頻繁に使用される方法は、6または12の方向に拡散を測定、データ収集の5-10分に基づいています。これらのデータに基づいて、拡散パターンは、典型的には最高の単一の優性の拡散方向を検出するのに適している単純なテンソルモデルでモデル化されています。この制限は、DTIが一点において互いにまたは "キス"を交差イメージング繊維を適切に実行しないことを意味します。クロッシングとキス繊維が良いような高角度分解能拡散イメージング(HARDI)19-21、拡散スペクトルイメージング(DSI)が1,2、および一般的なQ-ボールイメージング(のような高解像度の買収と再建の方法の組み合わせで検出されたGQI)22から24。
シーメンス3Tスキャナ上で実行する257方向マルチシェルDSIのシーケンスはここに示された結果の取得(パラメータのために使用された表1のラメータ)。取得されたデータは、複数の方向に同時拡散を検知することができる方位分布関数(ODF)を使用して各ボクセルに拡散パターンをモデル化GQI法24で再建された。他の高角度分解能拡散シーケンスが、同様の結果を生成する必要があります。 ODFsの正しい再構築、研究者は、DSIのスタジオ、ここで使用DWIの処理及びラクトプログラムへの入力勾配テーブル(これもB-テーブルと呼ぶ)に必要なことに注意してください。 (DSI Studioの詳細な使用説明書は、ソフトウェアのウェブサイトで見つけることができますhttp://dsi-studio.labsolver.org 。)この表は、取得した飲酒運転の各ボリュームに勾配方向と磁界の強さを示しています。グラデーションのテーブルは、MR取得プロトコルに依存しており、自動的にDSI Studioによって、DICOM画像から抽出されます。しかし、我々は、研究者はこのドエルを比較することをお勧めしますそのスキャナのDWIのプロトコルの標準テーブルと勾配表をatically抽出した。
6。全脳ラクトを通じてデータ品質とトラッキングパラメータを評価する
全脳シードとトラッキング繊維は、全体的なデータ品質を評価するための迅速かつ効果的な方法です。また、特にグローバルパラメータ、ラクトで停止基準として使用される異方性のしきい値に適切な値を決定する機会を提供します。この手順では、線維追跡プロセスでカバレッジを向上させ、ノイズを低減するとのバランスをとることが必要である。特別な注意は、このような角度しきい値およびトラッキングしきい値などのキー·トラッキング·パラメータを設定する際に取られるべきである。
異なる管の相対的な異方性は、年齢や白質の整合性などの生物学的な要因だけでなく、セッションの間にハードウェアキャリブレーションのような無関係な要因に応じて、個人間で異なる場合がありますので注意しておくことが重要です。以下では、私たちが追跡を平衡化するために複数の方法を示唆しているデータセット間のしきい値を設定します。すべての回で、知られている神経解剖学にそれらを比較することにより、追跡結果の品質を確認してください。例えば、既知の大脳半球間接続( すなわち 、脳梁、前方&後方交連)の外側大脳縦裂を横断繊維が追跡しきい値が低すぎると発生させる必要があるか、頭の動きのアーチファクトの証拠かもしれないことを示すことがあります。
かつてなら線維路は、短期的に曲率が変化しないので、しきい値をトラッキングとは対照的に、角度のしきい値は、セッション全体で特定の個人のために不変であるべきです。同様に、管の曲率は、脳の大きさや形態に大きな違いがない場合には、個人にわたって比較的一定でなければなりません。それにもかかわらず、注意は、このパラメータの初期値を設定する際に注意する必要があります。このようなヘアピンカーブなどありえない軌道を、従う繊維は角度しきい値が高すぎることが考えられます。
7。局所的に拘束されたラクト
全脳ラクトとは対照的に、局所的に拘束されたラクトは、このような繊維は、または渡すことができませんする必要がありそれを通してボリュームを指定したのとROIベースブール演算を使用しています。その結果、局所的に拘束されたラクトは、関心のあるセレクト繊維を追跡するための高感度と優れた制御を提供しています。全脳ラクト、シード操作および限られたコンピュータグラフィックスメモリの計算コストが高いため可能シード点の空間を、undersamples。 (それはPOですこれらの制約は、ラクトアルゴリズム、増加したメモリ容量、またはその他の要因の変化により、将来的には緩和されるであろうことをssible。)アンダーサンプリング、全脳ラクトグラフィの結果は、多くの場合に支配的な拡散経路に向かって付勢されている結果を生成脳。ユーザー提供のROIは、シード点の高密度に限られた対象領域を提供するそれが簡単にキャプチャするために困難を検出するための光ファイバ管を作ることで、この問題に対処します。
8。エンドポイントの密度解析
9。代表的な結果
高解像度の拡散強調イメージングおよびファイバートラクトはの広い範囲に適用することができます神経科学の質問。本論文で我々の焦点は、細部に至るまで機能的神経イメージングによる構造接続方法のカップリングである。しかし、我々は、DWIの任意のアプリケーションがデータ·アクイジション·プロトコル、再構成法、およびラクトパラメータが最終製品に重大な、独立した効果を発揮することができることを考えれば、ラクト結果の慎重な評価が必要であることに注意してください。 図5は、使用して最適と部分最適の結果を示しています全脳ラクトグラフィ。すべての3つの画像は、単一の参加者からの同一方向257-DWIのデータセットに基づいており、最適な結果が左側のパネルに表示されます。これとは対照的に、中央のパネルには過度に寛大ラクトパラメータ(FAと角度しきい値)の効果を示しています。右側のパネルには、DWIのデータを復元するために単一テンソルモデルを用いた結果、その品質の低下を示しています。
我々は、ラクトグラフィの結果が裏付けることができます方法の2つの例を含めるとinterpretatiに知らせる機能イメージングデータの上に。すなわち、顔の知覚と視覚的注意:これらの実験は、機能的なシード領域の作成を許可された認知プロセスを評価する。これらのシード領域は認知ネットワーク内白質接続性の問題をテストするために使用することができます。 図6は、顔認知タスクの間に活性化領域の例を示しています。被験者はfMRIのスキャンを受けながら顔や日常のオブジェクトの写真を見た。中央紡錘状回(MFG)と下後頭回(IOG)に2つの腹側頭領域は、オブジェクトに対してでは顔のためにかなり大きいBOLD反応を示した。これら2つの機能的に定義された領域は、その後、(前述のセクション6-7で概説)ラクト中シード領域として使用された。 図6Aは、繊維の大束は側頭葉内の関心のこれらの2つの領域を接続することを(赤で表示)合理化を示し、約12cmの距離で。繊維とsのタイトなパッキングに注意してください。この距離以上の繊維曲のモール度。このパターンは、長距離(たとえば、REFを参照してください。26)を介して機能ネットワーク内で1対1接続の典型であり、 図6(b)は、個々の繊維のエンドポイントとともにIOG機能シード領域(黄色)(赤点)を示しています。繊維のエンドポイントは、ROI全体に配置されています。この接続パターンは、これらの領域が顔認知ネットワーク内で高速通信の根底にある直接、長距離接続を持っていることを示唆している。
2番目の例( 図7)は、視覚皮質感覚領域および後部頭頂皮質における注意制御の領域との間の接続を示しています。このケースでは、機能的なアクティベーション(後頭部と頭頂領域)の2セットは、同一個体からfMRIの独立したデータ·セットを介して生成された。頭頂アクティベーションは、visuで6箇所の間の注意シフトタスクを介して生成されたアルフィールド(詳細については、リファレンスを参照してください27。)、後頭領域は視覚野(V1 - V3)の機能的なシード領域の間の境界をマークするために使用された標準的な視野子午線マッピング28を使用して定義されていたのに対し、 図7Aに示しV1、V2&V3のシード領域(赤、緑、および青、それぞれ)、IPS-1というラベルの付いたPPCのシード領域と、これらの領域をつなぐ線維路のおおよその位置。チッタゴンは、それらが播種し、そこから後頭部のROIによって色分けされています。側頭葉( 図6)で、長い直線繊維とは異なり、これらの白質路は短い距離(範囲3〜5センチメートル)をカバーし、したがって、より多くのU字型であり、彼らは後頭部から移動して、より少ないすし詰め状態頭頂葉の葉。 図7Bは、各地域における繊維のエンドポイントとともに皮質表面上のIPS(茶色)、V1(赤)、V2(緑)、&V3(ブルー)機能的に定義された領域を示しています。注意IPS-1内のエンドポイントの相互嵌合度が大きいと対比シード領域によって後頭葉における管の分離、。これは、我々のPPCの領域(選択的注意タスクの実行中にfMRIの活動を通じて識別される)感覚皮質の多くの異なるノードに構造的接続と、脳の収束領域であってもよいことを示唆している。この接続パターンは、初期の皮質の活性を調節する高次脳領域からの注意のバイアス信号の伝送を可能にすることができる、これらの信号が視覚野29、30内のターゲットの表現を高めるのに役立つ。
図1。拡散強調画像(DWI)の重要な概念の概略図パネル:均質媒体中で、拡散がブラウン運動の結果として、ランダムに発生します。水分子の数が多い場合は、拡散が等方性、つまり、集計拡散パターンが球状である。パネルB:軸索内および軸索の束の隙間に水分子の拡散は、軸索の壁や他の支持構造によって制約されています。したがって、線維路に沿って拡散は異方性である:それは、他の方向に比べて繊維管の軌道に沿ってはるかに大きい。パネルC:高分解能DWIの方法が白質路の複雑な構成では異方性拡散をモデル化するためにこのような配向分布関数(ODF)のようなモデルを使用しています。この例に見られるように、ODFsは一点で交差する複数の線維路に別々の拡散経路を区別することができます。 2つまたは3つの異なる線維路を含むクロッシングは、脳内の共通している。
図2。繊維追跡研究はいくつかの方法で行うことができます最も重要な選択肢が取得プロトコル、再構成技術、及びラクトグラフィ法を含む。現在の研究では、USE拡散スペクトルイメージング(DSI)が1、取得のための2プロトコル、再建のための一般化されたQ-サンプリングイメージング(GQI)24;とFACT決定的ラクト40、41。各ボクセルの拡散を表現するために、我々は、特に配向分布関数を生成するモデルフリーとハイブリッド再構成技術を、( 図1を参照してくださいODFs)をハイライト表示します。研究者は、予算、使用可能時間、高角度分解能の必要性、および頭部運動と非線形画像の歪みを補正することの重要性に基づいて、さまざまなパイプラインを選択することができます。この図は、すべての実行可能な買収、再建、ラクトグラフィ法の包括的なリストではありません。再構成技術の優れたレビューのためSeunarine&アレクサンダー42を参照してください。
図3。拡散MRI買収変数の相互作用、スキャン時間、およびab繊維踏切を解決するility。高拡散コントラストが複雑な横断構成で繊維を解決するために必要です。このコントラストは勾配方向の数( すなわち 、可能な繊維配向の数)およびb値(拡散強調の度合いを示す)を含むいくつかの要因に依存します。ここでは、b値と勾配方向の数を増加させる典型的な効果を提示する。このテーブルは唯一の動向を示し、個々の技術は、スキャン時間、信号対雑音比(SNR)は、拡散コントラスト時に異なる影響を与えることがあることに注意してください。一般的には、コントラストが勾配方向の数とb値の大きさの両方を増加させることによって改善することができます。高いb値では、しかし、拡散強調画像の信号対雑音比が減少しているし、スキャン時間はしばしば増加する。
図4。グラフィカル首席緑のテキストが使用される可能性があるソフトウェアを示しながら、黒の解剖学的MRI、DWI-MRIおよびfMRIの処理の流れのRY。テキストは、各処理ステップの性質を記述します。破線とボックスは、すべてのプロジェクトに適用されない場合があり、オプションの手順を示しています。この例では、処理がAFNI /須磨パッケージ(DSI StudioまたはTrackVisが示された場合を除く)で実行されます。他の神経画像解析パッケージに匹敵する機能は、しばしば置換されていてもよい。これらの図に示す手順の多くは、便利なスクリプトにソフトウェア開発者によって部分的に連結されている:我々は、特にFreeSurfer復興すべてのパイプラインに読者をご参照ください( http://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllDevTable ) 。我々は、いくつかのソフトウェアパッケージがDWIのデータのための完全な処理パイプラインを提供することをさらに注意したが、これらのパッケージは、その長所と短所が異なります、一部は高角度分解能拡散MRIデータを操作するためのツールが含まれていません。 拡大図を表示するにはここをクリック 。
図5。異なる再構成法とラクトパラメータを持つ全脳ラクトグラフィのイラスト。すべての画像は、同じデータセットは、複数のb値(7000秒/ mm 2で 、5シェル)と257方向拡散スペクトルイメージング(DSI)の配列から誘導された。パネルA:高解像度、ODFベースの再構成法を用いることによって達成最適な結果を得る。 0.06の比較的高いトラッキングしきい値は、強い異方性ボクセルから繊維を生成するために、選択されました。と55°の角度しきい値は、生物学的に非現実的な曲率( すなわち 、 "ルーピング"繊維)の繊維の生成を阻止するために選ばれました。 N大脳縦裂によって分離半球の明確な描写を、OTEは、また繊維バンドリングが脳溝/脳回輪郭を期待し、次の方法に注意してください。パネルB:同じ再構成法は、()のように使用されましたが、FAと角度のしきい値は、(0.03、85℃、それぞれ)ラクト中にもっと寛大に設定されていました。不適切なトラッキング·パラメータは、解剖学的構造についての本当の情報を隠蔽する "ジャンク"繊維の大量発生を引き起こす可能性があります。適切なパラメータの選択についてのアドバイスを、 "全脳ラクトを通じてデータ品質とトラッキングパラメータの評価"、第5章を参照してください。パネルC:データは、単一のテンソルモデル、DWIの中で最も広く使われている方法のいずれかを使用して再構成した。適切なトラッキング·パラメータ(と同じ)で、シングルテンソルモデルは多く知られている主要な線維路を再現し、脳回輪郭はサジタルビューで多少見えます。しかし、それはまた、ODFのモデルよりも偽陽性を生成します:ノート繊維が水平走行大脳縦裂の両端LYは大きい図を表示するには、ここをクリックしてください 。
図6。顔認知の実験からラクトグラフィの結果。パネル(a)は、顔認識の実験から同定された機能的なROI間ラクト起因する合理化されます。下後頭回(IOG)と半ば紡錘状回(MFG)の一般的な領域は黄色の楕円で示されます。パネル(B)は、繊維のIOGのエンドポイントは後部側頭皮質表面を拡大した腹ビューで表示された()パネルに示されているを示しています。黄色でレンダリングROIが顔認知機能MRI実験から得られた。 IOG機能的に定義されたアクティベーションと繊維のエンドポイントの間に大きな契約を注意してください。これらの繊維は、顔認知に関与する脳領域、MFGから追跡。P :/ / www.jove.com/files/ftp_upload/4125/4125fig6large.jpg "ターゲット=" _blank ">拡大図を表示するには、ここをクリックしてください。
図7。視覚的注意の実験。パネル(A) からトラクトグラフィの結果は、視覚的注意の実験27から識別された機能ROI間ラクト起因する合理化を示しています。後部頭頂皮質(IPS-1)と視覚野(V1d、V2d、&V3D)の一般的な領域は、色付きの楕円で示されています。 V1d赤、V2dための緑、V3Dの青:線維路は、対応する色でレンダリングされます。パネル(B)は、繊維のエンドポイントは後部(頭頂部と後頭部)皮質表面を拡大した側面図で表示された()パネルに示されているを示しています。カラー規則はパネルのものを()に一致します。視覚的注意機能的MRI実験から得られた関心領域は皮質表面に表示されます。すべての3つのトラクト/エンドポイントのETSは、視覚野でのターゲットへのバイアス信号を注意の源であるかもしれない視覚的注意のプライオリティのマッピングを含むと考えられているIPS-1の領域では、収束する。これらの線維路の後頭部両端が明らかに視覚野の領域によって分離されているのに対し、IPS-1の管は、主に、互いにかみ合っています。
MRスキャン | パラメータ |
DSI | 257方向拡散スペクトルイメージング(DSI)のスキャンは二回リフォーカススピンエコーEPIシーケンスを用いて、43分間の取得時間を持つ複数のQ値(TR = 9916ミリ秒、TE = 157ミリ、ボクセルサイズ= 2.4×2.4×2.4ミリメートル、FOV = 231 X 231ミリメートル、B-MAX = 7000秒/ mm 2で 、5シェル) |
解剖の | T1強調MPRAGEシーケンス(1ミリメートル×1ミリメートル×1ミリメートル、176矢状スライス、TR = 1870は、TI = 1100、FA = 8°、グラッパ= 2) |
fMRIの | T2 *加重エコープラナーイメージング(EPI)のパルスシーケンス(31斜軸スライス面内分解能2㎜×2ミリメートル、3ミリメートルのスライス厚、隙間なく、繰り返し時間[TR] = 2,000ミリ、エコー時間[TE ] = 29ミリ、フリップ角= 90°、グラッパ= 2、マトリックスサイズ= 96×96、視野[視野] = 192ミリメートル) |
表1神経画像収集パラメータ。
高解像度のDWIとファイバートラクトは、人間の脳の結合構造を調べるための強力なアプローチを提供します。ここで、我々は、fMRIによって評価し、この構造的なアーキテクチャは意味深長に脳機能に関連しているという証拠を提示します。 fMRIのタスクの活性化に基づくラクトの種子を使用することによって、私たちは視覚的注意の中の協調アクティブになっている脳領域が機能的神経解剖?...
特別な利害関係は宣言されません。
リストの承認と資金源。仕事はNIHのRO1-MH54246(メガバイト)、国立科学財団BCS0923763(メガバイト)、契約NBCHZ090439下の国防高等研究計画庁(DARPA)(WS)は、受賞N00014-11下の海軍研究所(ONR)のOfficeでサポートされている-1-0399(WS)との契約の下で陸軍研究所(ARL)W911NF-10-2から0022(WS)。このプレゼンテーションに含まれているビュー、意見、および/または所見は執筆者のものであり、上記の機関や米国国防総省の、明示的または黙示、公式見解や政策を表すものとして解釈されるべきではない。
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved