JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • Erratum Notice
  • 要約
  • 要約
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • Erratum
  • 転載および許可

Erratum Notice

Important: There has been an erratum issued for this article. Read More ...

要約

内向き整流カリウム(KIR)ハイスループット化合物スクリーニングのためのチャネルの活性を測定するための定量的な蛍光アッセイを開発し、検証するための方法が提示されます。

要約

内向き整流カリウム(KIR)チャネルファミリーの特定のメンバーは、高血圧、心房細動、疼痛1,2を含む様々な疾患のために創薬ターゲットを想定しています。しかし、ほとんどの場合、それらの治療法としての可能性、あるいは基本的な生理機能を理解するための進捗状況は良い薬理学的ツールの不足により減速されています。確かに、内向き整流ファミリーの分子薬理学は、ナノモル親和性のための番号電位依存性カリウム(KV)チャネルのS4スーパーファミリーのそれより大幅に遅れていると選択性の高いペプチド毒素変調器は3が発見されました。ハチ毒毒素tertiapin及びその誘導体は、Kir1.1とKir3チャネル4,5の強力な阻害剤であるが、ペプチドは実験だけでなく、治療的に使用が制限され、その抗原特性と貧しい生物学的利用能、代謝安定性、組織浸透度に起因しています。強力の開発改良された薬理学的特性を有する選択的低分子プローブは、完全にキールチャネルの生理機能と治療の可能性を理解するための鍵となるでしょう。

学術、科学者がより良い薬理6必要としている分子標的とするシグナル伝達経路のためのプローブディスカバリキャンペーンを開始するために、米国立衛生研究所によってサポートされて分子ライブラリプローブプロダクションセンターネットワーク(MLPCN)は、衛生研究所(NIH)の共通基金の機会を作成しています。 MLPCNは、業界規模スクリーニングセンターや医薬品化学研究者にアクセスを提供し、インフォマティクス、遺伝子や遺伝子ネットワークの機能を解明する小分子プローブを開発するためにサポートしています。 MLPCNにエントリを得るための重要なステップは、ハイスループットスクリーニング(HTS)に適している堅牢なターゲットまたは経路特異的アッセイの開発である。

ここでは、蛍光ベースのタリウム(Tl +)フラックスASSAを開発する方法について説明しハイスループット化合物スクリーニングのための7,8,9,10キールチャネル機能のy。アッセイは、Kの透過性K +同族TLにチャンネル孔+に基づいています。市販の蛍光TL +レポーター色素が細孔を通過Tlの貫通フラックス+を検出するために使用されます。 BTC、FluoZin-2、7,8 FluxOR:TL +フラックスアッセイに適している少なくとも3市販の染料があります。このプロトコルはFluoZin-2を用いたアッセイの開発について説明します。もともと亜鉛指標として開発·販売していますが、FluoZin-2展示Tlの時に蛍光発光+結合で堅牢かつ用量依存的に増加。 FluxORは7,8使用可能だったので9,10を行うために続けている前に、我々はFluoZin-2で働き始めた。しかし、彼らの特定のnに最も適した染料アッセイ開発の手順は、すべての3つの色素について本質的に同一であるため、ユーザーは判断する必要がありますeeds。またMLPCNへのエントリーのために考慮されることで合意されている必要がありアッセイの性能ベンチマークを議論する。 TL +は容易ほとんどのK +チャネルに浸透しているので、このアッセイは、ほとんどのK +チャネルターゲットに適応する必要があります。

プロトコル

1。安定したポリクローナル細胞株の作製

  1. 興味のあるキールチャネルを発現している高品質の安定した細胞株の確立は、堅牢なハイスループットスクリーニングアッセイの開発に向けた重要な第一歩である。構成性K +チャネルの過剰発現は細胞死の経路、安定細胞株の変性とアッセイ性能の損失の活性化につながることができます。 (下記参照)は、これらの潜在的な問題を回避し、アッセイ開発のための便利な内部統制を実現するために、テトラサイクリン誘導発現系は、8をお勧めします。
  2. 文化のB培地(10%FBS、50 U / mlペニシリン、50μg/ mlのストレプトマイシン及び5μg/ mlのブラストサイジンSを含有するDMEM増殖培地)で、標準的な技術を使用して、親のT-REX-HEK293細胞を。トランスフェクションし、安定なクローンの選択のために早期の継代細胞(液体窒素貯蔵から解凍から例えば 3から4までの通路)を使用します。
  3. 内板4万t-REX-HEK293細胞75cm 2フラスコフラスコので、次の日の約80%コンフルエントであること。 37℃、5%CO 2インキュベーター内で一晩培養℃、
  4. 製造元のプロトコールに従ってpcDNA5/TO-Kir DNAとリポフェクタミンLTX / Plus試薬の10〜15μgを用いて細胞をトランスフェクトする。 5時間後、B培地でトランスフェクション培地を交換してください。
  5. トランスフェクションの24時間後には、安定したクローン選択を開始するために、B-を含む培地250μg/ mlのハイグロマイシン(BH-培地)で、B-培地を交換してください。新鮮なBH-培地で2〜3日毎に細胞を養う。
  6. 細胞の90%以上を安定的にトランスフェクトされた細胞の小さなコロニーを残して、次の7日間で死ぬべきである。コロニーは拡張用175cm 2のフラスコに分割する前に追加の10から14日間成長することができます。
  7. BH-培地条件付け45パーセント、45%抗生物質フリー、血清含有DMEMおよび10%DMSOを含有する培地中で凍結保存、凍結3×10 6細胞/ mlであった。フリーズ-80℃で一晩細胞°次に細胞凍結容器中のCと長期保存のために液体窒素に移動します。 Invitrogenの推奨プロトコールを使用して液体窒素から細胞を解凍します。彼らは、処理時に75%コンフルエントより大きいフラスコから凍結された場合、細胞の生存率が低くなることに注意してください。

2。安定した単クローン細胞株の作製

  1. 価を含まないHBSSとの安定したポリクローナル細胞のサブコンフルエント75cm 2フラスコを洗います。 37℃、5%CO 2インキュベーター中で3〜5分間トリプシンとインキュベートの1ミリリットルを追加℃にトリプシン活性を阻害し、細胞を完全に解離する( 例えば 、5回)繰り返して粉薬をフラスコに、BH-培地5mlを加える。慎重にサスペンションがほぼ完全に単一の細胞から構成されて確実にするために細胞を顕微鏡で検査します。これは、モノクローナル細胞株を得る可能性が高くなります。
  2. 細胞密度を決定し、希釈20μlあたり0.7細胞の濃度に懸濁液。マルチチャンネルピペッター、BD PureCoatアミン被覆(または同等のポリ-D-リジンコーティング)384ウェルプレートの各ウェルに細胞懸濁液20μlをピペットを用いて。原理的には、井戸の70%がこれらのめっき条件で1セルを受信する必要があります。したがって、384ウェルプレートは分析する200以上のクローンが含まれているはずです。 37℃、5%CO 2インキュベーター内で培養した細胞を℃に続ける
  3. 一週間後、単一コロニーを含むウェルを顕微鏡でプレートを点検してください。今後の参考のために永久的なマーカーで蓋の上に自分の位置を注意してください。また、注意して、複数のコロニーを含むウェルを除外するようにしてください。これらは、最も簡単によくの複数の側面から成長したコロニーの出現によって認識されます。蒸発皿の端の近くの井戸からより迅速に発生する傾向があることに注意してください。著しい蒸発が発生したウェルに、BH-mediumを加えてください。それ以外の場合は、不要なtである細胞を養うO。
  4. 次の7から10日の間に、より頻繁に井戸を監視します。興味のある井戸が少なくとも50%コンフルエントのときに細胞が分割できるようになります。
  5. 384ウェルプレートを複製するためにセルを分割する; TL +フラックスと文化の中でモノクローナル行を継続するために相互に検定するための一つのプレート。興味のある細胞株を含むウェルから培地を吸引する。価を含まないHBSSで細胞を洗浄し、各ウェルに20μlのトリプシンを加え、15〜20分間、37℃のインキュベーターにプレートを転送します。細胞培養用フードにバックプレートを移動した後、各ウェルに、BH-培地20μlを添加し、細胞を解離させるために数回ひいて粉にする。細胞が完全に解離していることを確認するために、顕微鏡下で井戸を検査します。細胞がしっかりと接着されますので、これは、ピペッティングの複数のラウンドを必要とするかもしれません。細胞が解離していると、新しいBD PureCoatアミンコーティングされた38の井戸を複製するために、各細胞懸濁液10μlを転送4ウェルプレート。堅牢なキールチャネル活性を示すクローンが(下記参照)は、元々のウェルにまで遡ることができるように、よくソースとの間の関係に注意して、先の井戸を複製するようにしてください。 37℃、5%CO 2インキュベーター中で残りの細胞を養うために、文化の中でそれらを継続するだけでなく、元のソース℃にBH-培地20μlを添加し
  6. 先のプレートの細胞が付着して1週間までには成長することができます。クローンのほとんどは、少なくとも50%のコンフルエンスに到達すると、それらはTlを用いたキールチャネル活性を評価することができます+フラックスアッセイは、以下に説明する。
  7. アッセイの前日に、培地を吸引し、10%透析FBSを含むBH培地と交換してください。これは汚染されたテトラサイクリン血清から生じうる不注意チャネルの発現を防ぐことができます。 1μg/ mlのテトラサイクリンを含むことによって、各クローンの重複した井戸のうちの1つだけにキールチャネル発現を誘導する。重複よく非誘導を務める"背景"のコントロール。次に説明するようにTL +フラックスアッセイを行う。

3。一般的なTL +フラックスアッセイ手順

  1. TL +フラックス実験の前日に、細胞を解離し、セクション2.1と2.2で説明されるように細胞懸濁液の濃度を定量する。プレート2万モノクローナル細胞が安定的にサーモマルチドロップコンビまたはマルチチャンネルピペッターを使用してBD PureCoatアミンコーティングした384ウェルプレートの各ウェルに関心のキールチャネル遺伝子でトランスフェクトした。メッキに10%透析FBSを含むBH媒体を使用しています。いくつかの細胞が他はないでしょう、一方、キールチャネル発現を誘導することが1μg/ mlのテトラサイクリンで一晩培養されることに注意してください。誘導および非誘導細胞の位置は、実験の種類ごとに異なりますし、 図1に示されている。
  2. 翌日、細胞は接着性と均一に底面全体に分散していることを保証するために、顕微鏡下でプレートを点検井戸の。井戸は80〜90%コンフルエントになる必要があります。
  3. 20ウェルあたりの20mMのHEPESを含むHBSSアッセイ緩​​衝液で細胞培養培地を交換し、NaOHでpH 7.3に緩衝するELx405マイクロプレートウォッシャーを使用しています。あるいは、一つは、プレートが反転して廃棄容器に培地を取り出すときに急激にダウンしてスナップしてから、残りのメディアを削除するには、積み重ねられた紙タオルの上に撫でされる、 "フリックとスラム"メソッドを使用することができます。直ちに乾燥から細胞を防ぐためにプレートにHBSSアッセイバッファーを再度追加します。
  4. FluoZin-2を準備し、染料ローディング溶液はAM。チューブを軽く遠心分離した後、無水DMSO100μlのFluoZin-2粉末の50μgを溶かす。この時点で、1,000×ストック溶液のアリコートを、後で使用するために-20℃で保存することができます。ときに使用する準備ができて、穏やかにピペッティングと染料とのミックスにボリュームプルロニックF-127/DMSO液あたり20%の重量の50μlを添加する。プルロニックF-127が追加された後のように、色素を凍結しないでください低温では、界面活性剤が溶液から析出する可能性があります。 FluoZin-2150μlの体積、HBSSのアッセイバッファーAM/Pluronic-F127〜100 mlを加え、染料ローディングバッファーを作るために静かに混和する。マルチドロップコンビまたはマルチチャンネルピペッターを用い、HBSSアッセイバッファーの各ウェル既に含む20μlに染料ローディング緩衝液20μlを添加する。約1時間(それが必要であるという直接的な証拠はないものの、一般的にインキュベーションを、暗闇の中で行われた)のために室温で細胞をインキュベートします。
  5. 細胞が色素でロードしている間、TL +刺激プレートを準備します。たて1mMの硫酸マグネシウムを含む5倍TL +刺激バッファー、1.8mMの硫酸カルシウム、5mMグルコース、10mMのHEPESおよび12mMのTL +硫酸50ml中に炭酸水素ナトリウム0.5gを溶かす。例えば、溶液のpHは、二酸化炭素の非常に狭い範囲と損失内に保持されている必要があり、場合に代わりに、重炭酸ナトリウムグルコン酸ナトリウムに置き換えることができます懸念される。二酸化炭素の脱出を制限し、炭酸水素ナトリウムが溶液になるまで数回反転させるためにしっかりとチューブをキャップ。マルチチャンネルピ ​​ペッターを用い、ポリプロピレン384ウェルプレート( 表1)の各ウェルに溶液50μlを添加する。
  6. 細胞はFluoZin-2でロードされた後、午前、ELx405マイクロプレートウォッシャーでプレートを洗ったり、上のセクション3.3で説明されるように、 "フリックとスラム"メソッドを使用します。 Tlのタイプ+実行されるフラックスの実験に応じて、各ウェルに20μlの背面またはHBSSのアッセイバッファー40μlを添加する。プレートは現在の実験の準備が整いました。
  7. 浜松機能創薬スクリーニングシステム(FDSS)または統合された液体分配機能を持つ同等の運動をイメージングプレートリーダーにセルおよびTl +プレート。などのFluo-4としてフルオレセイン/フルオレセイン系色素に適したフィルターを使用しています。
  8. 10μlの5倍Tlのようにシングル追加プロトコルを設定する+シリーズをHBSSアッセイ緩​​衝液40μlを含むセルプレートの対応するウェルに添加する。少なくとも10秒間、1 Hzのサンプリング周波数で録音するベースラインの蛍光。最適な細胞播種、洗浄及び染料負荷条件が確立されるとウェル間の蛍光は、プレート全体に均一で安定していなければならない。統合された384チャンネルピ ​​ペッターを同時に各ウェルにTL +刺激バッファを追加するために使用されます。
  9. Tlの蛍光の+誘導増加率とピークがオフライン分析用にキャプチャされるように、少なくとも2分間録音できます。

4。最適TL +濃度の測定

  1. TL +は容易ほとんどの内向き整流K +チャネルに浸透。 TL +濃度がTL +レポーター色素FluoZin-2のダイナミックレンジを超えないように、人は経験的にハイトンに使用する最適なTL +濃度を決定するべきであることを確認するhroughput画面。我々は、チャネルを最大限に活性化される条件の下で最大の蛍光応答(EC 80)の80%を呼び起こすのTl +濃度をお勧めします。
  2. 板、染料負荷および各ウェルにHBSSアッセイ緩​​衝液40μlを残して、第3節で、上記のようBD PureCoatアミンコーティングまたは同等のポリ-D-リジンコート384ウェルプレートで細胞を洗浄する。 、 図1Aのプレートマップに示すカラム1行としてA1-A23はテトラサイクリンで誘導されていないので、興味のあるキールチャネルを発現しない細胞が含まれているはずです。 FluoZin-2非誘導ウェルからの蛍光シグナルは、例えばNa +などの内因性の経路を通じて、TL +フラックスのレベルを決定するために使用されます- K +-ATPaseのポンプと、通常は、HEK-で表され電位依存性K +チャネル、 293細胞。
  3. 準備するペッティングアジレントブラボー自動リキッドハンドリングプラットフォームまたはマニュアルの使用HBSSアッセイ緩衝液中11点TL +濃度の希釈系列。典型的には、100%から0.002パーセントTL +に至るまで3倍連続希釈系列をアッセイで評価されます。 TL +ソリューション最終アッセイで1:5に希釈されるので、シリーズは5倍の濃度で構成されるべきである。 1mMの硫酸マグネシウム、1.8mMの硫酸カルシウム、5mMグルコースおよび10mM HEPESを含む5倍TL +フリーバッファーでセクション3で説明されている標準の5倍TL +バッファを希釈して希釈系列を調製します。再び、新たに、図2Aに示されているプレートの地図によると、384ウェルプレートポリプロピレンメッキの直前に最後のTL +バッファー50mlの炭酸水素ナトリウム0.5gを溶かす。
  4. FDSSにセルおよびTl +刺激プレートをロードします。 10μlの5倍TL +シリーズはHBSの40μlを含む細胞プレートの対応するウェルに添加されるように、単一の付加プロトコルを設定するSのアッセイバッファー。 Tlを追加する+ +板に前に10秒のレコードベースラインFluoZin-2蛍光。結果の再現性を確立するために3つの別々の日に実験を繰り返す。

5。 DMSOに分析感度の定量

  1. ハイスループットスクリーニングに尋問小分子は、それ自体がアッセイの性能に影響を与えることができる有機溶剤、ジメチルスルホキシド(DMSO)に溶解されています。したがって、DMSOにアッセイの感度は最初の画面での許容最高DMSO濃度を確立するために検討しなければならない。
  2. 板、染料負荷および各ウェルにHBSSアッセイ緩​​衝液20μlを残して、第3節で、上記のようBD PureCoatアミンコーティングされた384ウェルプレートで細胞を洗浄する。プレート全体は、テトラサイクリン( 図3A)で誘導された細胞が含まれているはずです。
  3. 11-D点を準備するためにピペッティングブラボー自動液体取り扱いPlatformまたはマニュアルの使用HBSSアッセイ緩​​衝液中のMSOの濃度の希釈系列。一般的に、10%から0.01%(v / v)のDMSOに至るまでの2倍希釈系列を用いて、アッセイにおける活性について評価されています。 DMSO溶液を最終アッセイのうちに半分に希釈化されることになりますので、シリーズは2倍の濃度で構成されるべきである。希釈系列を図3Aに示すようにプレートマップに従って、ポリプロピレン384ウェルプレートに播種しなければならない。
  4. EC 80または第4節で決定した最適TL +濃度に基づいて5倍TL +刺激プレートを準備します。
  5. FDSSに細胞、DMSOおよびTL +刺激プレートをロードします。 2倍濃度のDMSOシリーズの20μlをHBSSアッセイ緩​​衝液20μlを含むセルプレートの対応するウェルに添加されているように、2つの付加プロトコルを設定します。細胞が画面中に小分子車両にさらされる時間と同じ量の細胞にDMSOを残す。レコードベースラインFluoZin-2での蛍光セルプレートの各ウェルに5×TL +緩衝液10μlを添加する前に、少なくとも10秒。結果の再現性を確立するために3つの別々の日に実験を繰り返す。
  6. アッセイは、化合物を10μMの濃度でテストされている、典型的なハイスループットスクリーニングのために、少なくとも0.1%v / vの濃度のDMSOに寛容であるべきである。

6。既知の薬理学的変調に分析感度の定量

  1. 最適なTL +濃度およびアッセイのDMSO耐性を決定した後、キールチャネル媒介TL +フラックスで知られている薬理学的に活性な薬剤の効果を検討すべきである。この一連の実験では、アッセイの感度、その効力に基づいてランク上位の化合物への機能性、有効性の彼らのモード( 例えば活性化剤、酵素阻害剤)に基づく化合物を分類する能力を評価し、それ以降で使用される行儀の制御化合物を識別するアッセイDevelopmentと画面。
  2. 板、染料負荷および各ウェルにHBSSアッセイ緩​​衝液20μlを残して、第3節で、上記のようBD PureCoatアミンコーティングされた384ウェルプレートで細胞を洗浄する。 1列目と行A1-A23はテトラサイクリン( 図4A)で誘導されていない細胞を含んでいる必要があります。
  3. HBSSアッセイ緩​​衝液中で知られている変調器の11点濃度の希釈系列を調製するためにピペッティングブラボー自動液体取り扱いPlatformまたはマニュアルを使用しています。一般的に、100μMから2nmまで3倍希釈系列をアッセイにおける活性について評価されています。 DMSO溶液を最終アッセイのうちに半分に希釈化されることになりますので、シリーズは2倍の濃度で構成されるべきである。希釈系列を、 図4(a)に示すようにプレートマップによると、384ウェルプレートポリプロピレンで三重にメッキすることがあります。希釈液をDMSOの最終濃度は、薬物治療と少ないthaの間で同じであるように作られていることを確認してください nまたはセクション5で定義された最大許容DMSO濃度に等しい。
  4. セクション4で決定した最適TL +濃度に基づいて5倍TL +刺激プレートを準備します。
  5. FDSSに細胞、化合物およびTl +刺激プレートをロードします。 20μlの2倍の濃度の化合物のシリーズをHBSSアッセイ緩​​衝液20μlを含むセルプレートの対応するウェルに添加されているように、2つの付加プロトコルを設定します。セルプレートに化合物を追加して、最大20分までインキュベートする。バックグラウンド比に最適な信号を検出するための化合物のための最適なインキュベーション時間はカップル異なるインキュベーション時間が選択された一連の実験を実行することによって決定することができることに注意してください。レコードベースラインFluoZin-2細胞プレートの各ウェルに5×TL +緩衝液10μlを添加する前に、少なくとも10秒間蛍光。結果の再現性を確立するために3つの別々の日に実験を繰り返す。
_title "> 7。チェッカー分析

  1. 次の一連の実験では、アッセイの均一性や再現性は "チェッカーボード"の分析を用いて評価されます。 図5Aに示すように、一般的に、制御阻害剤は、384ウェルプレートの各列と行の他のすべてのウェル中にメッキが施されている。厳密アッセイにおけるノイズを評価するために、阻害剤のEC 80濃度を使用する必要があります。 DMSOは、車両制御などの他のウェルに添加する。 TL +フラックスDMSOおよび薬剤処理した細胞では、Zプライム、井戸の2つの集団の間でウェル間のばらつきの統計的尺度の値を計算するために使用されます。 Zの素数は次の式を用いて計算されます。
    Zの素数= 1 - (3SD P + 3SD N)/ |という意味のp + nを意味|
    SDは標準偏差であり、pは遠慮のないフラックスであり、nは完全フラックス値は阻害される。 3つの別々の日には0.5以上Z '値を用いたアッセイは、sとみなされますハイスループットスクリーニングは、uitable。
  2. 板、染料負荷および各ウェルにHBSSアッセイ緩​​衝液20μlを残して、第3節で、上記のようBD PureCoatアミンコーティングされた384ウェルプレートで細胞を洗浄する。プレート全体をテトラサイクリンで誘導されるべきであることに注意してください。
  3. マルチチャンネルピペッターを用いて、384ウェルポリプロピレンプレートにピペッティングすることにより化合物/ DMSOのプレートを作るμl/ウェルターゲットキールセクション6.5で決定した濃度のチャネル、および0.1%(v / v)のDMSO中の既知の阻害剤の80 図5Aに示すように、車両。ウェルA1マルチチャンネルピペッターを使用していてよく、B2のようにアップするだけでなくB24への代替で始まる既知の阻害剤を追加します。よくB1で始まるというように、最大​​でなくA24にDMSOでこの手順を繰り返します。プレートの最終的なレイアウトは、市松模様のものと一致する必要があります。
  4. 最適なTL +セクション4で決定に基づいて、5倍TL +刺激プレートを準備します。
  5. 細胞、化合物、およびTを読み込むL +刺激プレートFDSSに。 20μlの2倍の濃度の化合物のシリーズをHBSSアッセイ緩​​衝液20μlを含むセルプレートの対応するウェルに添加されているように、2つの付加プロトコルを設定します。セルプレートに化合物を追加し、最大室温で20分間インキュベートする。レコードベースラインFluoZin-2細胞プレートの各ウェルに5×TL +緩衝液10μlを添加する前に、少なくとも10秒間蛍光。結果の再現性を確立するために3つの別々の日に実験を繰り返す。

8。パイロット画面

  1. アッセイ開発の最終段階では、大規模な高スループットの画面で最終的に使用される条件下でアッセイの性能を評価するために数千の化合物のパイロット画面を実行します。
  2. 各ウェルにHBSSアッセイ緩​​衝液20μlを残しプレート、染料負荷とセクション3で上記のようにBD PureCoatアミンコーティングした384ウェルプレートで細胞を洗浄する)。プレート全体がキールチャネル発現を誘導するテトラサイクリンで一晩培養しなければならないことに注意してください。
  3. テストされる約2,000〜3,000構造的に多様な化合物を選択します。それは多くの場合、適切かつ潜在的にイオンチャネルモジュレーターについて濃縮既知活性を有する化合物のコレクションを使用すると便利です。このようなコレクションは、スペクトラム·コレクション(MicroSource)とLOPACコレクション(Sigma)を含む。また、パイロットの画面への関心のキールの既知の変調器を含むことが賢明である。理想的にはこれらの化合物は、後述の方法を選ぶヒットの公平なテストを可能にするために、盲検様式でウェルに添加されます。準備宛先プレートにMLPCNコレクション(ソースプレート)からDMSO中の選択された化合物の適切なボリュームを転送するLabcyteエコーリキッドハンドラーまたは適切なピンツールを使用して384ウェルポリプロピレンプレート(デスティネーション·プレート)の化合物は、試験化合物があることに注意してください列のみ3月22日で;カラム1、2、23、24の他のすべてのウェル内にセクション7で決定されるような完全にキールを阻害することが知られている濃度での既知の阻害剤を追加します。カラム1、2、23、および24の残りのウェル中のDMSO濃度をマッチさせた車両のコントロールを生成するためにDMSOの適切な量を追加します。マルチドロップコンビを使用してアッセイバッファーですべてのウェルを希釈します。一般的に試験化合物は、2倍、それらの標的スクリーニング濃度上記20μM、となります。
  4. セクション4で決定した最適TL +濃度に基づいてTL +刺激プレートを作る。
  5. パイロット画面を実行します。パイロットスクリーニングランでプレート間の一貫したタイミングを維持するために、プロトコルの実行の手順をずらすように注意してください。
  6. パイロット画面が完了すると、Z-プライム方程式を使用して、列1、2、23、および24から市松模様の井戸を分析します。対照集団の分離不良の原因を判断し、0.5未満のZ-プライム値を表示板を点検してください。ヒットができるBeは、多数の方法を使用して選択。パイロット画面のためには、車両制御集団の平均と標準偏差を計算し、> / = 3標準偏差車両コントロールの平均値から値を生産井に基づいてヒット曲を選ぶのが一般的です。
  7. プレートの2セットで、複製のヒットピッキング、再テストの選択に続いてヒット。プレートのセットは、テトラサイクリンの存在下で安定したキールのセルが含まれています、もう一つはテトラサイクリンの存在下で安定したキールの細胞株が含まれています。 2再試験板の少なくとも1つの正の再試験および非誘導プレートにおいて有意な活性を示すことができないが考えられるかもしれないことヒットはヒットを確認しました。検出されたどのように多くの "隠れた"コントロールサンプルのを判断するための検証を行い、ヒット·リストを調べます。パイロット画面でコントロールを検出しないと、スクリーニングやヒットピッキングパラメータのさらなる最適化の必要性を示しています。

結果

テトラサイクリン誘導発現系の使用が特徴的な内因性経路を介してTL +フラックスと関心のあるキールチャネルのための便利な内部統制を提供しています。 図1は、実験の種類で使用されるセルメッキマップの例をいくつか示します。非誘導またはテトラサイクリン誘導細胞を含むウェルの位置が異なる色で示されています。 図2Aは、アッセイ開発と化合物ス?...

ディスカッション

データ処理:いったんデータが収集され、分析の一般的なステップは、実験の最初にF 0を初期値に各ウェルの蛍光応答、Fを、正規化が含まれます。これは、一般的に"静的比"と呼ばれ、 "F / F 0"に象徴される。F0を指示薬色素によって支配されている例では静的比率演算が実質的に、このような照明、信号コレクション内disuniformities...

開示事項

特別な利害関係は宣言されません。

謝辞

この作品は、国立保健研究所(NIH)の助成金の1R21NS073097-01と1R01DK082884(JSD)と国立衛生研究所の助成金PIER11VCTRための財団からの資金によって支えられている。

資料

NameCompanyCatalog NumberComments
試薬の名称 会社 カタログ番号 注釈
pcDNA5/TO インビトロジェン V1033-20 テトラサイクリン誘導発現ベクター
T-REX-HEK293細胞インビトロジェン R71007 テトラサイクリン誘導性細胞株
リポフェクタミンLTX /プラス試薬インビトロジェン 15338100 トランスフェクション試薬
FBS ATLANTAバイオ S11550 細胞培養培地
DMEM インビトロジェン 11965 細胞培養培地
ハイグロマイシンB インビトロジェン 10687-010 細胞培養培地
ブラストサイジンS インビトロジェン R210-01 細胞培養培地
ペニシリン/ストレプトマイシンインビトロジェン 15140 細胞培養培地
フリーHBSS - 二価メディアテック 21022CV 細胞洗浄
トリプシン0.25パーセントメディアテック 25053CI 細胞解離
テトラサイクリン塩酸シグマ T9823 誘導試薬
透析FBS ATLANTAバイオ S12650 プレート培地
FluoZin-2 インビトロジェン F24189 蛍光染料
プルロニックF-127 インビトロジェン P-3000MP 色素ローディング
HBSS インビトロジェン 14175 アッセイバッファー
HEPES インビトロジェン 15630 アッセイバッファー
NaHCO 3を シグマ S6297 TL +刺激バッファー
MgSO 4を シグマ M2643 TL +刺激バッファー
•のCaSO 4·2H 2 O シグマ C3771 TL +刺激バッファー
D-グルコースシグマ G7528 TL +刺激バッファー
硫酸タリウムアルドリッチ 204625 TL +刺激バッファー
HEPES シグマ H4034 TL +刺激バッファー
DMSO シグマ D4540 溶剤
8チャネルの電子ピペッターバイオヒット E300 384内のセルメッキ -ウェルプレート
BD PureCoatアミンコーティングした384ウェルプレート BD Biosciences社 356719 アッセイマイクロプレート
エコーは、384ウェルマイクロプレートポリプロピレン(384PP)を認定 Labcyte P-05525 化合物源マイクロプレート
384ウェルマイクロプレートポリプロピレングライナーバイオワン 781280
マルチドロップコンビ試薬ディスペンサーサーモサイエンティフィック 5840300
ELx405マイクロプレートウォッシャー BioTekの ELx405HT 自動細胞洗浄
液体ハンドラをエコー Labcyte Labcyteエコー550
ブラボー自動リキッドハンドリングプラットフォームアジレント·テクノロジー標準モデル
Hamama津FDSS 6000 浜松市キネティック·イメージングプレートリーダー

表1。材料および試薬のリスト。

参考文献

  1. Ehrlich, J. R. Inward rectifier potassium currents as a target for atrial fibrillation therapy. J. Cardiovasc. Pharmacol. 52 (2), 129 (2008).
  2. Bhave, G., Lonergan, D., Chauder, B. A., Denton, J. S. Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. Future Med. Chem. 2 (5), 757 (2010).
  3. Swartz, K. J. Tarantula toxins interacting with voltage sensors in potassium channels. Toxicon. 49 (2), 213 (2007).
  4. Jin, W., Lu, Z. A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry. 37 (38), 13291 (1998).
  5. Jin, W., Lu, Z. Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry. 38 (43), 14286 (1999).
  6. Roy, A., McDonald, P. R., Sittampalam, S., Chaguturu, R. Open access high throughput drug discovery in the public domain: a Mount Everest in the making. Curr. Pharm. Biotechnol. 11 (7), 764 (2010).
  7. Weaver, C. D., et al. A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J. Biomol. Screen. 9 (8), 671 (2004).
  8. Lewis, L. M., et al. High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and. 76 (5), 1094 (2009).
  9. Bhave, G., et al. Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel. Mol. Pharmacol. 79 (1), 42 (2011).
  10. Raphemot, R., et al. Discovery, characterization, and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir) channels with preference for Kir2.3, Kir3.x, and Kir7.1. Front Pharmacol. 2, 75 (2012).
  11. Niswender, C. M., et al. A novel assay of Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of the group III metabotropic glutamate receptors. Mol. Pharmacol. 73 (4), 1213 (2008).

Erratum


Formal Correction: Erratum: High-throughput Screening for Small-molecule Modulators of Inward Rectifier Potassium Channels
Posted by JoVE Editors on 10/10/2017. Citeable Link.

An erratum was issued for: High-throughput Screening for Small-molecule Modulators of Inward Rectifier Potassium Channels. The Protocol section has been updated.

The formula in step 7.1 of the Protocol has been updated from:

Z prime = 1- (3SDp + 3SDn)/|meanp + meann |

to:

Z prime = 1- (3SDp + 3SDn)/|meanp - meann |

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

71 DMSO

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved