このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
ここで紹介する方法は、高エネルギーのレーザーパルスと時間でこれらの損傷とその回復のその後の分析でライブゼブラフィッシュ胚の正確な傷害を含む。我々はまた、遺伝的に単一標識又は骨格筋細胞のグループが中に、レーザー光誘起損傷後に追跡することができる方法を示しています。
様々な実験的アプローチがmyotoxin注射(ブピバカイン、心臓毒性またはnotexin)、筋移植(除神経·脈管切除再生を誘導した)、激しい運動ではなく、ネズミ筋ジストロフィーのモデルを含む、筋肉の再生を研究することを目的として筋損傷を誘発するためにマウスに使用されてきたmdxマウス(これらの方法の見直しのための1を参照)など。ゼブラフィッシュでは、遺伝学的ア プローチは、筋ジストロフィーの表現型(例えばrunzel 2またはsapje 3など)を展示し、筋ジストロフィーに関連する遺伝子の発現をブロック4オリゴヌクレオチド、アンチセンスモルフォ変異株が挙げられる。加えて、化学的ア プローチは、それによって最終的に筋ジストロフィー5につながるhypercontraction、その結果、また、ガランタミン、化学阻害する化合物とアセチルコリンエステラーゼなどが可能です。しかし、遺伝的および薬理学的アプローチグラム物理的に与えた傷害の程度がより簡単に空間的にも時間的に制御されているのに対し、1 enerally、個々の内のすべての筋肉に影響を与えます。ローカライズされた物理的な損傷は、内部統制として、反対の筋肉の評価を可能にする。別のグループは最近、非常に局所的に個々の胚ゼブラフィッシュの筋肉の細胞膜にダメージを与える二光子レーザー(822 nm)での使用を報告しながら、実際、我々は最近、ゼブラフィッシュ胚6に骨格筋の再生を研究するためにレーザーを介する細胞アブレーションを使用細胞7。
ここでは、ゼブラフィッシュ胚における骨格筋細胞傷害に対してmicropointレーザー(アンドールテクノロジー)を使用する方法について検討する。 micropointレーザーは435 nmの波長での標的細胞の切除に適している高エネルギーのレーザーです。レーザー顕微鏡を同時にfで使用できるような方法で顕微鏡(我々のセットアップで、ツァイスの光学顕微鏡)に接続されているまたは試料上および創傷(明視野、蛍光)の効果を可視化するためのレーザー光を当てた。レーザーパルスを制御するためのパラメータは、波長、強度、パルス数を含む。
その透明性と外部の胚発生に起因して、ゼブラフィッシュ胚では、レーザ誘起損傷の両方のためとその後の回復を研究するために非常に適しています。 1〜2日後の受精、体節、骨格筋細胞が徐々にテール8,9にトランクから体節形成の進行による後方から前方に成熟する。これらの段階で、胚は、自発的にけいれんや水泳を開始します。ゼブラフィッシュは、最近、組織再生の研究のための重要な脊椎動物のモデル生物として認識されている、組織のように多くの種類(心臓、神経、血管など)が成人ゼブラフィッシュ10、11の損傷後に再生することができる。
1。単一細胞を標識
β-アクチンプロモーターの制御下でGFPをコードするプラスミドまたは他のGFP融合タンパク質と1細胞期胚を注入します。開発中に、GFPはその後モザイク様式で発現されています。 、β-アクチンプロモーターの制御下にα-アクチニン-GFP融合タンパク質を置きます:ここでは、トランスジェニック構築TG [α-アクチニン-GFPのβ-アクチン ]を使用していました。
2。胚の埋め込み
3。胚レーザー負傷
注1:レーザーが唯一の焦点面内の細胞を傷つけることなく、上記のセルとレーザービーム内にある下にはありません。レーザーが最適に設定し、z軸内の最大の焦点に合わせて調整されていることを実験前に確認してください。どのセルを知るために、実験を行う前に、レーザー損傷の深さを決定するのが最善ですsは正確に怪我をされます。
4。傷つけおよびリカバリの分析
注2:筋活動は、(水泳やけいれん)骨格筋の回復のために特に重要です。胚がtricaine曝露と硬いアガロース埋め込みのために移動することはできませんので、recommeないあまりにも長い間、スライドとカバーガラスの間に胚を維持するために又、作業。
Access restricted. Please log in or start a trial to view this content.
レーザー媒介損傷が固定化された1日齢の胚で行われた。 図1に示すように、いくつかのレーザーパルスは、通常、体節の境界との間に張り渡されたときに、損傷を受け、コイル、アクチンに富んだ筋原線維で容易に認識でき、小傷を生成することができます。レーザーパルスの数値が高いしかし、ほとんどの筋原繊維が破壊された大規模な損傷を受けた体節ブロックになります?...
Access restricted. Please log in or start a trial to view this content.
レーザー媒介傷害はゼブラフィッシュ胚で制御された条件の下で再生を勉強するために、細胞を切除することにより、所望の大きさの傷を負わせるための強力な方法です。特に、細胞を正確に標的とすることができる( 図2)と傷害エリアとタイミングの両方を制御することができる。その後、損傷部位と再生のプロセスが容易に、監視記録された( 図3)と(
Access restricted. Please log in or start a trial to view this content.
特別な利害関係は宣言されません。
我々は、技術的なヘルプやアドバイスを貰えるボブ(アンドールテクノロジー)に感謝。 SA-S。ドイツ学術振興協会(DFG)のハイゼンベルク交わりによってサポートされています。この作品は、助成SE2016/7-1をDFGによってサポートされていました。
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
加熱ブロック | |||
ペア#5鉗子 | デュモン | ||
スライドガラス | メンツェル | 76×26ミリメートル | |
カバースリップ | ロート | 50×24ミリメートル1位 | |
ワセリン | |||
実体顕微鏡 | ライカ | MZFLIII | |
Micropointレーザー | アンドール·テクノロジー | ||
蛍光顕微鏡 | ツァイス | Axioplan II | |
Metamorphソフトウェア | 分子デバイス | ||
試薬
|
Access restricted. Please log in or start a trial to view this content.
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved