Method Article
ポリリンゴ酸に基づくナノ薬剤の例は、がんに適用可能な個別化医療の合理的な設計に向けて提示されている。これは、ヌードマウスでのHer2陽性ヒト乳癌を治療するために、ナノ薬物の合成を記載する。
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
癌のゲノムは( バイオテクノロジーとがんゲノムアトラスのためのナショナルセンターを )解明されてきたポストゲノム時代では、がんの今後の治療は、多くの場合、同じ腫瘍1-4内の腫瘍の遺伝的多様性を占めることになる。バイオインフォマティクスと、高速ではない高価なDNA配列決定は、個人的なレベル2,4,5に悪性の遺伝子/変異の取得を可能にする。遺伝子が同定されたら、患者は、悪性の6遺伝子の発現を改変またはサイレンシングする個人化された薬で治療される。癌細胞を標的とし、これらの細胞に薬剤を送達する必要性は、多官能性送達システムを必要とする。明らかに、ナノ薬物は、この要件を満たすことができる7。
発見ナノ粒子のサージング波では、癌細胞に化学療法薬、タンパク質および/または遺伝子的に活性な物質のペイロードをもたらすために好適であることが分かっている。しかし、副作用が広告であることが残っている服を着て。生分解性の欠如に関連し、それらの一つは、疾患を誘発する可能性と健康な組織および器官における材料の堆積を引き起こすことがある。堆積を最小限にするために、我々は、非毒性であり、微生物起源とH 2 OとCO 2から8個 、生分解性であり、非免疫原性ポリリンゴ酸を導入した。私たちは、ナノ薬剤のオールインワンの共有結合の種類を合成するためにポリマーを使用しています。このようなテモゾロミド、ドキソルビシン、またはアンチセンスオリゴヌクレオチドおよび溢出、組織ターゲティング、エンドソーム溶解配信サービスを提供する官能基として化学的に結合化学療法剤が含まれています。それらは、標的腫瘍細胞に到着したときの薬物は本質的に、それによってそれらの完全な薬学的活性を再生する、ナノプラットフォームから切断される。
我々は、ポリマーナノプラットフォームの微生物生産する方法であって、その精製、および癌のためのトラスツズマブ(ハーセプチン)を含むナノ薬物の化学合成を記載ターゲティングおよびHER2過剰産生を阻害するためのアンチセンスオリゴヌクレオチド。ヌードマウスに異種ヒトのHer2陽性乳癌にナノ薬物を適用することにおいて、我々は、癌治療の高い有効性を示す。ポリリンゴ酸ナノ薬物のためにここに導入腫瘍標的化および遺伝子サイレンシングの原理は、他の癌症例の治療に適用することができる。
全ての実験は、生体内で行われ、動物実験委員会のプロトコルに完全に従っている外科的および非外科的手順を含む公式の動物の規制に準拠しています。
ポリリンゴ酸の1。バイオプロダクション
2。ポリリンゴ酸ベースのナノ薬物の合成
3。アッセイおよびプロパティ
4。in vitro試験
5。in vivo試験
HER2受容体の発現を抑制するとHER2シグナリング12を遮断することによって、ヒトHER2陽性乳がんの抑制
戦略
ヒト乳癌の異なる形態の中で、HER2陽性腫瘍は、最悪の臨床転帰を有する。我々はヌードマウスモデルにおけるヒトHER2過剰発現乳癌の治療の成功を提示する。戦略は、受容体のHER2-mRNAの依存の合成( 図1)を遮断するためのハーセプチンとHER2固有のAONを採用した、HER2シグナル伝達経路の即時サイレンの両方に積極的にナノ薬剤を必要とする。ハーセプチンおよび抗HER2 AONを含有する鉛ナノコンジュゲートは、ハーセプチン又はAONのいずれかを欠いているつのコントロールと共に図3に示されている。リード化合物は、throをトランスサイトーシスによってアクティブ溢出を達成するために抗MsTfRmAbを含んでいたぐふ腫瘍血管の内皮のTfRに結合する。腫瘍への取り込みがはるかに少ない抗体の非存在下で認められ、腫瘍依存性のEPR効果に起因していた13。アレクサフルーア680を含むナノ複合体の蛍光バージョンはイメージング研究のために合成した。
。HER2陽性乳癌細胞へのAON送達および腫瘍増殖阻害のメカニズムを図1左上隅:ナノコンジュゲートは、 図3から適応。左下隅:マウスの腫瘍血管の表面上のTfRを発現する。ナノ薬物が受容体に結合し、トランスサイトーシスによって腫瘍に入る。さらに、腫瘍へのアクセスがある程度の腫瘍依存強化取り込みと尿閉に参加無秩序内皮層を通って可能です(EPR)13。次に、nanodrugは、ヒト癌細胞上に発現HER2に結合し、初期エンドソーム中に内在化。 HER2シグナル伝達経路もブロックを結合する。エンドソームの成熟とその酸性化した後、ナノ薬剤のエンドソーム脱出メカニズムが有効になります。 Nanodrugが細胞質に入射したジスルフィドスペーサーの還元的切断によってナノプラットフォームから放出され、HER2合成を遮断HER2-mRNAに結合する。合成の遮断は、HER2シグナル伝達の遮断を拡張し、腫瘍増殖阻害を誘導する。
ポリリンゴ酸プラットフォームの微生物生産
ナノコンジュプラットフォーム、ポリリンゴ酸(PMLA)は、 モジホコリカビ microplasmodiaの培養によって産生され、プロトコールに記載され、 図2に示すように、培養液から精製した。生産および精製は、滑らかで再現性があった。それは、CONTすることが重要であったポリマーの自発的切断を回避するためにROL時間、pHおよび温度。入念な洗浄およびDEAE-カラムの溶出は、DNA、炭水化物、毒素や色物質を除去するために推奨されます。極端な純度を無水アセトンに溶解し、不溶性物質を除去した後に得た。生産PMLAの総量は、キャンペーンごとに5±1グラムだった。高度10 Lバイオリアクターを使用する際に再現性よく達成された80,000〜100,000 ワット MのPMPLA精製1.5±0.5グラムの量。秒-HPLC溶出プロフィールは、対称的であった。個数分布に応じて動的光散乱分析は、8±1nmの流体力学直径に対応する単一のピークとPDI多分散指数= 0.10±0.02、球状粒子と仮定するための測定器ソフトウェアによって計算さを示した。ゼータ電位だっ-22±2 MV(pH値7.5)。
/ 50668/50668fig2highres.jpg "幅=" 500 "/>
図2。(Lee ら 9から適応) モジホコリカビの培養されたマイクロマラリア原虫からのポリリンゴ酸の産生および精製 。ポリリンゴ酸(PMLA)はバイオリアクター中モジホコリカビのマラリア原虫から製造し、陰イオン交換(DEAE)に結合することによって培養上清から回収される。溶離液は、カルシウム塩としてエタノール沈殿させる。カルシウム塩の溶液は、セファデックスG25上でMW-画している。 PMLA含む画分をアンバーライトIR-120H +の上の酸へのCa-塩から変換されます。無料PMLAは、最終的に乾燥、白色の粉末をを凍結乾燥されています。
リードナノ複合体の化学合成
P /ペグ5000(5%)/ LOEt(40%)/ AON(2.5%)/ハーセプチン(0.2%)/ A NTI-MsTfRmAb(0.2%)
リードナノ薬物の2つの前駆体とナノ複合体の模式的な構造は、図のウレア3に示されている。前駆体がAON、HER2または抗体ハーセプチンのいずれかを欠いているように設計されている間、リードは、すべての成分が含まれています。 AONとのmAbのほかに、化合物は、血漿タンパク質、細網内皮系(RES)からのクリアランス、および酵素的切断による分解への結合を最小限にするために、ポリエチレングリコール5000のmPEG を含有した。アンチセンス配列5'-CAT-GGT-GCT-CAC-TGC-GGC-TCC-GGC-3 ' のHer2 mRNAに相補的であり、慎重にHER2を遮断することに向けて高い特異性を得るために、いくつかのHER2発現細胞株に対してインビトロで試験されている合成とオフターゲット効果を示さない。
8/50668fig3highres.jpg "幅=" 500 "/>
図3ナノは、ヒトHER2陽性乳癌を治療するためにコンジュゲート 。大手ナノ薬剤(上部構造)2薬(ハーセプチン、AON HER2)が含まれています。バージョン2と3は、薬を1つだけ含んでいる。ヒトHER2過剰発現腫瘍細胞への1及び2の取り込みは、ハーセプチンの結合によって管理されている。ハーセプチンが含まれていないナノ接合体3は、ヒト細胞によってエンドソームの取り込みのための抗HuTfRmAbを受けた。アレクサフルーア680との結合は、画像化目的のためのオプションでした。赤いバーは、ナノ複合体プラットフォームPMLA / LOEt(40%)を表している。 %は、指示されたリガンド(nanodrug = 100%リンゴ酸残基の合計量)の結合で消費リンゴ酸残基の割合を示している。
図4ナノの化学合成コンジュゲートP / LOEt / AON HER2 / anti-MsTfR/Herceptin上から下へ:ペンダントカルボキシレート(化学活性化)のPMLA-N-ヒドロキシスクシンイミジルエステル(PMLA-NHS)の合成。 2 -メルカプト-1 -アミノエタン(2-MEA)とのアミド形成によりNHSの置換、メチル-PEG 5000 -アミン(のmPEG 5000-NH 2)、トリロイシン(LLL)又はロイシンエチルエステル(LOEt)。この「preconjugateは「切断可能なジスルフィド結合の形成によるチオエーテル形成とAONによるモノクローナル抗体-MAL-PEG-MALを添付します。残りの2-MEAはアミドエチル - ジチオプロピオン酸を形成するキャップされる。シングルmAbの添付ファイルのみが表示されます。複数の添付ファイルは、モノクローナル抗体の混合物を使用して管理されています。パーセンテージ%が種々のリガンド(無料PMLA 100%)と結合したカルボキシレートの分画を示す。
図のウレア4に概説されるようにナノ複合体を合成した。鉛の計算された分子量結合体は、719000でした。合成の全収率はリンゴ酸含有量に関して45±5%であった。 100kDaのPMLAプラットフォーム862マリル単位(= 100%)、平均で40%がLOEt、5%のmPEG 2%AON 2%、0.2%および0.2%ハーセプチン、抗MsTfRのmAbを行う。各抗体の金額はPMLAプラットフォームの分子あたり1.7分子の平均に対応した。 %が設計され、基分析によって確認%、±5%以内で同一であった。例は、設計によるコンテンツとの比較を示すリンゴ酸、AONに、mAb及びmPEG 5000と表2の実験の内容を計算するために、表1に与えられた場合である。セクション3の下の基準に基づいて、高純度、高反応収率およびサイズ排除による効率的な分離( 例えばモノクローナル抗体の無料およびmAb-ナノコンジュゲートは、SEC-HPLCで1分で区切られています)、および溶媒への選択的な溶解度に基づいて達成された。モノクローナル抗体の活性はナノ薬物合成の全体にわたって保持されることが示され、それは2種類の抗体が同じポリマープラットフォーム上で組み立てられたことを確認した。非定型ELISA実験の結果を図5のウレアに示されている。一般的には、リンゴ酸、AON、タンパク質、PEGの定量的グループ解析用およびELISAのためのアッセイが報告された合成の場合だけではなく様々な人員および計測が実施した場合に再現性のある結果が得られ、堅調に推移しましたが、また分析に使用するとき他の合成されたナノコンジュゲートの。
表1。リンゴ酸含量を基準にnanodrug組成の計算。
668table2.jpg "幅=" 600 "/>
表2に設計された組成物を用いた実験ナノ薬剤組成物の比較。
図5 ELISA化学合成後に、及び異なる抗体の複数の結合の実証のために抗体親和性の測定のためのナノ薬物は、抗体mAbそれぞれの抗原A及びBに対する(A)及び抗体mAb(B)を含有する。 ELISAプレートを抗原(A)で被覆されている。遊離のmAb(A)、遊離のmAb(B)、及びナノ薬物は、ELISAプレートに適用される。唯一のmAb(A)は、抗原(A)に結合している間に洗浄後、抗体は、モノクローナル抗体(A)またはmAb(B)のいずれかに特異的な二次ペルオキシダーゼ結合した抗体を用いて試験する。これは、遊離およびmAb(A)と結合したナノ薬物、および間接的mAbを同じナノ薬物分子の(B)ではなく遊離のmAb(B)共役していることがわかる、プレート上に保持される。濃度依存性は、化学的結合は、抗体の結合活性に影響を与えなかったことを示し、自由で結合mAb(A)のための同等の結合親和性を示しています。さらに、同じ物理エンティティ(ナノプラットフォーム)抗体mAb(B)の検出結果に対するmAb(A)とモノクローナル抗体(B)の共同ライゲーション。ここに示した実験結果は、抗ヒトTfRmAb(A)および抗マウスTfRmAb(B)を参照してください。同様の結果は、抗MsTfR mAbおよび抗HER2モノクローナル抗体(ハーセプチン)などの試験された他の抗体結合のために示されている。
物理化学的な調査は、P / MPEG(5%)/ LOEt(40%)/ AON(2%)/ハーセプチン(0.2%)/抗MsTfRmAb(0.2%)(鉛、2 - のための流体力学的直径22.1±2.3 nmで示された薬物版)、20.1±2.4 nmのPに対する/ MPEG(5%)/ LOEt(40%)/ AON(2%)/抗MsTfRmAb(0.2%)/抗HuTfRmAb(0.2%)(AON薬版) 、および15.1±P / MPEG(5%)/ LOEt(40%)/ハーセプチン(0.2%)(ハーセプチン薬版)1.2程度。 pH7におけるゼータ電位0.5は、次の順序-5.2±0.4 mVで、-5.7±0.6 mVであり、-4.1±0.4 mVでいた。これは、ナノ複合体の測定された流体力学的直径は、無料のコンポーネントの測定された直径の加法に従わなかったことに言及すべきである。
腫瘍細胞膜を通るナノ薬物の送達とは、0時間及び3時間後に rを細胞質に放出する
エンドソーム取り込みによる細胞膜を介してナノ薬物の送達は、0時間及び3時間後のウレア図6に示されている。蛍光ラベルは、ナノ薬物プラットフォーム(緑アレクサフルーア680)に取り付けられており、AON(赤リサミン、)にしている。その重ね合わせは、D&Lと一緒にパネルG&Oの中の標識エンドソーム(青)の蛍光とのパネルに示されているピアソンの相関係数(R(r)は、プラットフォーム/エンドソームの共局在化、AON /エンドソーム、0時間および3時間のためのプラットフォーム/ AON。Tに関する画像から算出した彼は3時間の画像は、細胞質内のグルタチオン依存性ジスルフィド切断によるナノ薬剤の細胞質とAONの解離にエンドソームからの放出を示した。
図6。標的細胞(丁ら 11から適応)によるナノ複合体の取り込みのための共焦点顕微鏡 。細胞を二重ポリマープラットフォーム時およびリサミンAONに結合した(赤色)でのAlexaフルーア680(緑色)で標識されたナノ薬物と共に37℃で30分間インキュベートした。加えて、エンドソームをFM1-43(青)で染色した。局在化は、0時間(A)および3時間後(B)のインキュベーション後に示されている。パネルA、AB、&B単独のナノ複合体の蛍光団によるのijショー染色し、A、CD&B、KLでの共局在。さらに、エンドソームの染色はなし、FG&B、パネルA、E&B、M、ナノコンジュゲートおよびendosomesinパネルAの共局在に示されている。それぞれのパネルのためのパネルA、H&B、Pショーの位相差。(C)ピアソンの相関関係は、プラットフォームにエンドソーム、AON-エンドソーム、0時間、3時間に計算プラットフォームAONの共局在のために、R(r)を係数。 をクリックしてくださいここで、この図の拡大版を表示します。
in vitroおよびin vivoでのヒト乳癌の阻害
コムで細胞株BT-474を過剰発現するHER2のインビトロ成長阻害における低発現細胞株MDA-MB-231を有するパリソンのウレアは、 図7に示されている。阻害の程度は、リードナノ複合体P /ペグ/ LOEt / AON HER2 /ハーセプチン/抗MsTfRmAbによって、それぞれ、50%および30%である。他の化合物による阻害は、MDA-MB-231細胞に対するよりBT-474のために小さいが高い。 BT-474細胞株は、異種の乳癌のマウスの治療のために選択した。
図7 BT-474乳癌細胞および(Inoue ら 12より)低い発現するMDA-MB-231細胞を過剰発現するHER2のインビトロ成長阻害。HER2は、BT-474乳癌細胞株を過剰発現するための増殖阻害の比較(左)およびHER2低発現する乳癌細胞株MDA-MB-231(右)。のTfR(S)抗MsTfRmを表すABとのTfR(胡/ MS)は、抗HuTfRmAb&アンチMsTfRmAbを示している。ハーセプチンまたはAON のHER2のどちらかを欠いてリードナノ薬、P / MPEG / LOEt / AON のHER2 /ハーセプチン/のTfR(MS)、およびナノ薬は、PBS、ハーセプチンとAON HER2と比較されます。ハーセプチンの非存在下で、抗MsTfRmAbは、腫瘍細胞によりエンドソーム取り込みを提供するために結合させた。濃度は、抗体、AON、HER2、4μMのendoporter(AONの適用)に関して、4μMに関して40μg/ mlのでした。有意性は、*を付し、P <0.05:**、P <0.02 ***、P <0.003はPBSと比較した。
図8のインビボでの治療の結果は、ヒト乳癌を過剰発現するBT-474のHer2を有するマウスのために提示される。成長は、PBS( 図のURE 8)でのみ処理した対照と比較してハーセプチンおよびHER2固有のAONを含む鉛nanodrugで> 95%阻害された。阻害ハーセプチン単独、P / MPEG / LOEt /ハーセプチンまたはP / MPEG / LOEt / AON /抗MsTfRmAb /抗HuTfRmAb 60%以下であった。腫瘍抽出物のウェスタンブロット分析は、HER2合成およびAktリン酸化の両方の阻害を示したが、全Aktの変化及びハウスキーピングGAPDH酵素なし。 PARPは、アポトーシスのレベルの上昇に対応して切断した。治療、および腫瘍の退縮を示すH&Eで染色した組織切片後の腫瘍の写真を図のウレア9に示す。
(井上ら 12から適応)鉛および前駆体ナノ薬による治療中図8。腫瘍サイズおよびタンパク質。種々の処置(42日、完全に8回の注射を21日目)であった。腫瘍の大きさ。バーは標準を示す平均からの偏差。抗Her2 AONとハーセプチンとコンジュゲートリードはハーセプチン単独またはナノコンジュゲートを含む単一の薬物のいずれかよりも優れていた。B。 HER2、リン酸化Akt、全Akt、PARBの発現に及ぼす様々な治療の効果、切断されPARB及びGAPDHをウエスタンブロット法で示されている。 この図の拡大版を表示するには、こちらをクリックしてください。
図9。ヌードマウス上のHER2陽性のBT-474ヒト乳癌。腫瘍退縮および組織切片における壊死/アポトーシス(Ionue ら 12から適応) の治療 。アッパー:腫瘍の縮小(赤矢印)。腫瘍の成長(青色の矢印)をサポートするエストロゲンペレットの表示。ロウrは腫瘍切片のヘマトキシリン·エオシン(H&E)染色。増殖する腫瘍は、腫瘍細胞の密なパッキングにより示されている。壊死組織が 腫瘍細胞が消去されているところが見られる。 この図の拡大版を表示するには、こちらをクリックしてください。
生分解性天然ポリマーからのナノ薬物の製造のための実験的経路は、個別化医療の合成に使用することが提示される。説明は、ナノ薬物を合成するための汎用的なプラットフォームですポリリンゴ酸の制御された生産および精製から始まります。再現可能な技術を用いて、ポリマーは、高分子量でおよび医薬の合成に適した極端な純度で得られる。合成は、効率的にHER2陽性乳癌を治療するために示されているナノ薬物に記載されている。説明は、癌の治療のための他のほとんどのナノ薬物の合成に変換することができる。標的化は、例えば、HER2タンパク質または効率的に内在化される任意の他の腫瘍マーカーとして腫瘍特異的抗原に結合する、例えばハーセプチンなどの抗体を含む。ナノ薬物を効率よくトレ下で癌の増殖を阻害するアンチセンスオリゴヌクレオチドおよび化学療法剤の選択を提供しatment。この例では、HER2-コーディングmRNAとHER2と特異的アンチセンスオリゴヌクレオチドのアニーリングに結合ハーセプチンは、HER2シグナル伝達とHER2陽性乳癌の深刻な減少の持続的阻止をもたらした。我々は、アンチセンスオリゴヌクレオチドによる腫瘍標的化および遺伝子発現の阻害の基礎となる原理に基づいて最新のは、いくつかの他のナノ薬物および正常ヒト神経膠芽腫阻害し、前臨床およびトリプルネガティブ乳がん11,14-18を合成した。
合成作業はモジホコリカビ (「粘菌」科の種)の培養上清よりポリリンゴ酸、高度に精製されたナノ薬物プラットフォームの準備を開始します。調製物は、多数の抗体、ペプチド、オリゴヌクレオチドおよび活性薬物送達および腫瘍増殖阻害で機能する他の分子の結合を可能にする原則として、ポリマーの高い分子量を強調する。 Followi制御された培養および精製ngの、予測可能な収率でポリマーの再現性の品質が製造されている。ポリマーは、任意の時間のための便利な条件下で保存されている。
ポリマーのペンダントカルボキシレートの化学的活性始まるPMLAナノ複合体の合成は、いくつかの合成工程で行われる。ステップ間では、合成中間体は、必要に応じて任意の量の調製を可能にする保留にすることができるので、スケーリングをアップで使用することができる。合成の進行をTLCおよびsec-HPLCに続いて、ナノ薬剤の組成および活性の両方がグループ固有の定量的な化学的アッセイ、ELISA、および種々の物理的測定によって制御される。我々の経験は、これらの合成は、優れた収率と純度でスムーズかつ再現進行されてきたということです。 PEで必要に応じて、抗体およびアンチセンスオリゴヌクレオチドの特異性を選択することにより、ナノ薬剤の任意の変異体を良好に合成され、薬をrsonalized。
ヒトHER2陽性乳癌の治療成功の様式は、マウス癌モデルの製造、ナノ薬、イメージング、腫瘍増殖の分析の適用のための有効な代表例である。 インビトロでの生存試験の結果は、細胞株および動物実験で使用されるリーディング薬を選択する上で有用である。 インビボゼノジェンイメージングは、ナノ薬物が実際に腫瘍に送達されることを検証する。ウエスタンブロッティングの結果は、特定のタンパク質のレベルは、がん治療中の予測方法で答えたかどうかを明らかにする。腫瘍の大きさの測定が阻害、不況や回帰について、 すなわち 、治療の成功について通知します。上記の例では予測可能性、再現性と顕著な毒性がないの高い度合いを示す他のポリリンゴ酸系ナノ薬剤との我々の経験を反映している。複数のTの毒性と有効性に関する最近の結果トリプルネガティブ乳がん治療のためargetedポリリンゴ酸抱合体は、この概念18の強力なサポートである。腫瘍間質へ向かう血管外への浸潤による内皮バリアー、エンドソームの取り込みによる腫瘍細胞膜、およびロイシンエチルエステルまたはトリロイシングループの作用によりエンドソーム膜破壊:主な特徴は、私たちのナノ薬剤がバイオ障壁を浸透することができるということです。血管外漏出とエンドソームの取り込みを確実にナノ薬に添付特異的抗体によって達成される。抗マウストランスフェリン受容体抗体は、受容体は、ほとんどの腫瘍血管に過剰発現しているためか、トランスサイトーシスにより、腫瘍への効率的な流入を仲介する。異なる抗体は、レシピエントの腫瘍細胞にナノ薬物を導くのと同じナノコンジュゲート分子機能に取り付けられている。両方の抗体の存在は、トランスサイトーシス用とエンドソーム取り込みのための他の一方は、最適な機能に必須である。 Mの定量分析ALIC酸および抗体は、高度にナノ薬剤の最適な組成を制御するために推奨されます。最後に、オールインワンの共有結合ナノ薬物は、レシピエントの腫瘍細胞への宿主の血管系を通って途中で化学的に結合形で薬物を送達することに留意すべきである。これらは標的部位でのナノコンジュプラットフォームから切断により遊離の薬剤として再構成されるまで、化学結合は、非アクティブ最も薬(プロドラッグ)をレンダリングします。再活性化モダリティが配信と有害な副作用を呼び起こすために、最小限のチャンス時の安全性の高いを提供するので、これは重要です。汎用性、有効性と安全性が良いオーダーメイド医療に欠かせない属性です。
著者ジュリアY. Ljubimova、キース·L·ブラック、EggehardホラーはArrogeneテクノロジー株式会社の株主である
We greatly acknowledge financial support by NIH R01 CA123495, U01 CA151815, R01 CA136841, grants from the Department of Neurosurgery at Cedars-Cedars Medical Center and Arrogene Technology Inc.
Name | Company | Catalog Number | Comments |
2-Mercapto-1-ethylamine (Cysteamine; 2MEA) | Sigma-Aldrich | 30078-25G | |
4’,6-Diamidino-2-phenylindole (DAPI) | Vector Laboratories, Burlingame, CA | ||
90-Day release 17β-estradiol pellet | Innovative Research of America | ||
Alexa Fluor 680 C2 maleimide | Invitrogen | A20344 | |
Amberlite IR 120H | Sigma-Aldrich | 6428 | |
Antifoam Y-30 Emulsion | Sigam-Aldrich | A5758 | |
Anti-laminin-411 chain mAbs | Santa Cruz | SC-59980 | |
Anti-pAkt mAb | Cell Signalling | 9271S | |
Anti-PARB mAb | BD Biosciences | 556494 | |
Anti-von Willebrand Factor antibody | Abcam | AB6994 | |
Bacto Yeast Extract | Bacto, Dickinson/Sparks, MD | 212720 | |
Beta-actin | Cell Signalling | 3700 | |
BT-474 | ATCC | HTB-20 | |
Calcium Carbonate | Alfa Aesar | 36337 | |
Cell Proliferation Assay kit | Promega, Madison, WI, USA | PR-G3580 | |
Centriplus 100 | Millipore | 4414 | |
Dicyclohexylcarbodimide | Fluka | 36650 | |
DMEM | Sigma-Aldrich | D5796 | |
Eosin | Cardinal Health | S7439-4 | |
Galardin (MMP-inhibitors) | Santa Cruz | SC-994 | |
GAPDH | Cell Signalling | 2118 | |
Hematoxilin | Cardinal Health | S7439-3 | |
Hemin from porcine | Sigma-Aldrich | 51280 | |
Herceptin | Genentech | 15534 | |
Herceptin (Western blotting) | Cell Signalling | 2165S | |
IgG2a-kappa murine malignoma | Sigma | M77695X5m | |
Immun-Star AP Substrate Pack | Biorad | 170-5012 | |
Immun-StarTM AP Substrate Pack | Biorad | 170-5012 | |
LAL Reagent water | Lonza, MD | W50-1000 | |
Laminin-411 mAbs | Abcam | ||
Leucine ethyl ester (LOEt) | Sigma-Aldrich | 61850-10G-F | |
Limulus Amebocyte Lysate (LAL) PYROGENT-5000 tests | Cambrex BioScience | N384 | |
Lissamin-Morpholino AON | Gene Tools | Custom made | |
L-malic acid | Sigma-Aldrich | M6413 | |
Malate dehydrogenase | Sigma-Aldrich | M2634 | |
Mal-PEG-Mal | Laysan | mal-PEG-mal-3400 | |
Matrigel | BD Biosciences | 354248 | |
Milk, nonfat powdered | Proteomics | M203-10G | |
Morpholino oligonucleotides | GeneTools | custom made | |
mPEG5000 | Lysan | mPEG-NH2-5000 | |
N-hydroxysuccinimde (NHS) | ACROS Organics | 15727100 | |
Ninhydrin | Merck | 1.06762.0100 | |
Nitrocellulose Membrane Filter Paper Sandwich | Invitrogen | LC2001 | |
Nitrocellulose Membrane Filter Paper Sandwich, 0.45 µm | Invitrogen | LC2001 | |
Novex ® Tris-Glycine Transfer Buffer (25x) | Invitrogen | LC3675 | |
Nude Mice [Tac:Cr:(MCr)-Foxnnm] | Taconic | ||
PBS pH 7.2 10x | Gibco | 10010-49 | |
PBS pH 7.2 1x | Gibco | 70013 | |
PD-10 desalting columns | GE Healthcare | 17-0851 | |
Physarum polycephalum M3CVII | ATCC | 204388 | |
Pierce BCA protein assay | Thermo Scientific | 23225 | |
Protease inhibitor cocktail | Roche | 1.18362E+11 | |
Protein Detector ELISA Kit | KPL | 54-62-18 | |
Sephadex G-25 superfine | GE Healthcare | 17-0031 | |
Sephadex G-75 | GE Healthcare | 17-0050 | |
Sephadex-LH20 | GE Healthcare | 17-0090 | |
SKBR-3 | ATCC | HTB-30 | |
SPDP | Proteochem | C1116 | |
Streamline-DEAE | GE Healthcare | 17-0994 | |
Styryl Red FM 1-43 | Life Technologies | T-3163 | |
TBS 10x | Bio-Rad | 170-6435 | |
TCEP | Sigma-Aldrich | C4706-2G | |
TLC, silica coated aluminia sheets | Merck, Darmstadt, DE | 60F254 | |
Trileucine (LLL) | Bachem | H-3915 | |
Triton X-114 | Sigma-Aldrich | X114 | |
Tween®20 | Sigma-Aldrich | P1379 | |
Vivaspin 20 | VWR | 14005-302 | |
DAPI | Vector Laboratories, Burlingame, CA | ||
Dexmedetomidine | Pfizer | ||
Atipamezole | Pfizer | ||
Carprofen | Pfizer | ||
Betadine | Foster and Smith, Wisconsin |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved