JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

一次元閉じ込められた微小環境における細胞の自発的な遊走を研究するための定量的方法が記載されている。この方法は、微細加工されたチャネルを利用し、単一の実験では、異なる条件下で多数の細胞の遊走を研​​究するために使用することができる。

要約

ここで説明する方法は、1次元での閉じ込め下で細胞遊走の研究を可能にする。これは、物理的な制約によって細胞に偏光された表現型を与える微細加工されたチャネルの使用に基づいている。前後に移動:内部のチャンネルと、細胞は2つの可能性を持っている。指向性が制限され、この簡略化は、細胞遊走の自動追跡および細胞移動を説明するための定量的なパラメータの抽出を容易にする。これらのパラメータは、運動中の細胞の速度、方向の変化、一時停止が含まれる。マイクロチャネルはまた、蛍光マーカーの使用と互換性があり、したがって、高解像度での細胞移動の際に細胞内小器官及び構造の局在化を研究するのに適している。最後に、チャネルの表面は、チャネルまたは走触性の研究の粘着特性の制御を可能にする、異なる基質で官能化することができる。要約すると、システム時間記載やがては独立した実験の標準化と再現性を容易にする、幾何学的形状と環境の生化学的性質の両方が制御された条件で大細胞数の移動を分析することを意図している。

概要

マイグレーションは、開発、免疫応答および組織再生を含む多細胞生物における多くの生理学的プロセスに重要である複雑な細胞機能である。また、このような腫瘍の浸潤および転移などの特定の病的状態は、細胞運動性1に依存している。これらの理由から、細胞遊走、基本および翻訳の両方の研究との関連で研究の主要な分野となっている。 インビボでは 、ほとんどの組織が ​​豊富な細胞外マトリックスおよび高細胞密度によって特徴付けられる。細胞移動は、従って、生理的条件下で、複雑な閉じ込められた環境で発生する。古典的には、最も可能性の高い歴史的な理由や技術的な限界のために、細胞移動は、監禁などの組織に見られる環境プロパティの多くを再現していないフラットな2D系で研究されている。また、2Dでの運動性のために必須である細胞接着などの要因は、最近necessaではないことを示したされていますRILY 2Dにし、他の環境での細胞運動を支配する機構は2異なっていることを示唆し、 生体内でまたはゲルの内部移行に必要。いくつかのシステムは、細胞外マトリックス組成物3の特性をrecapitulating目指す組織の複雑な性質、最も有名なものコラーゲンゲルを模倣するために開発されている。ここでは、限られた環境下で1次元での研究細胞移動を可能にする簡単な補完的な方法として、マイクロチャネルを提案する。

このシステムでは細胞は、それらが自然に入るその中にマイクロチャネルに沿って移動する。遊走細胞はその後、おそらくそれらの極性を強化管状ジオメトリを採用し、チャンネルの形状を取得する。チャネル内のセルの直線運動は、自動細胞追跡実験からの定量パラメータの抽出を可能にする。技術的な観点から、このシステムは、簡単で柔軟性があります。 coatinチャネル壁のgを操作することができ、チャネルのサイズおよび形状を適合させることができ、多数のセルは、単一の実験で分析することができる。このシステムはまた、スケールアップすることができる細胞の運動性に関与する分子の中距離スクリーン解析を実行する。ここで説明するプロトコルは、細胞モデルとして樹状細胞(DC)を用いて標準化されている。彼らは4。 インビトロ 、DCは自然発生的に限られた環境の中を移動することが示されている特異的な免疫応答の開始と維持に参加し、したがって、マイクロチャネル5,6に細胞運動を研究するための優れたモデルであるように、これらの細胞は、免疫システムの鍵となる。重要なことに、このシステムは、Tリンパ球、好中球、または腫瘍細胞を7-9などの他の運動性の細胞型の遊走を分析するために拡張することができる。

Access restricted. Please log in or start a trial to view this content.

プロトコル

重要な注意:このプロトコルは、希望するマイクロチャネルのための形状を含む、型が既に行われていることを前提としています。金型の調製に関するさらなる情報は既に10を出版されました。このプロトコルはまた、骨髄DCは文化が知られていることを前提としています。

1。チップ製造

  1. プラスチックカップ中の重量比10:1でPDMS油及び硬化剤を混合する。徹底的に両方の化合物を混ぜて。
  2. 金型ベアリングマイクロチャネル上でミックスをキャスト。全体の高さは0.5〜1センチメートルの間でなければなりません。
  3. 1時間の間に真空ジャーベルで気泡を除去。
  4. 65℃で2時間オーブンで後者を配置することによって、金型で硬化PDMS
  5. PDMSは、室温であると、外科用ブレードを用いて構造の周りに大きな部分をカットして、金型( 図1A)からそれをはがす。
  6. 細胞は(通常は2ミリメートル)を注入し、PDMSのサイズを変更されるドリル穴移行が評価されるであろうガラスボトムディッシュ( 図1B)のサイズに合わせて、外科ブレード。先に進む前に、レンズクリーニングペーパーを使って皿から残っている埃を取り除きます。これは、ステップ1.10に記載のガラスへのPDMSの結合を促進する。
  7. 構造側に粘着テープを貼り付けし、剥離することによりチャネルを含むサイズ変更PDMSチップを清掃してください。
  8. 粉塵及びPDMS小粒子を除去するために70%エタノール中でPDMS片を30秒間超音波処理する。きれいな空気を吹き付けて、その後すぐにそれらを乾燥させます。
  9. 300トルで30秒の間にプラズマ処理空気(または酸素)によって、PDMS(上向き構造体)と培養皿をアクティブにします。
  10. 恒久的に基板に、PDMSを固執する接触の両方で活性化された表面に置きます。必要に応じて、ポリマーおよびディッシュ( 図1C)のガラスとの間の接触を強制的にPDMSの上に少し押して、金属鉗子を使用しています。
  11. 65°CのFOのオーブンでチップをインキュベート結合を強化するため、R 1時間。

2。マイクロチャネルのコーティング

  1. 1分間300トルで空気プラズマにより全体構成をアクティブにします。これは次のステップのチャンネルへの液体の侵入を推進していきます。
  2. 水中で10μg/ mlので急速にフィブロネクチンとチップのエントリ穴を埋める。例えば、PEGのような他の基質は、チャネル壁への細胞接着を修飾するために使用することができる。液体は全体の構造全体に広がることを注意してください。これは簡単に、通常の光の下または通常の明視野顕微鏡を用いて目で確認することができます。
    NOTE:拡散が困難になっている、非常に小さい構造では、チャネル内の液体の侵入を少なくとも15分の間に真空ジャーベル構造を配置することによって強制することができる。コーティング蛍光基質の効率を検証する( 図2)を用いることができる。
  3. フィブロネクチンの吸着または任意の他のコーティングにsubstを可能にするために室温で1時間インキュベートチャネルの壁に対する割合。
  4. 構造が非結合基材を除去するために、PBSで3回洗浄します。
  5. 洗浄後、議定書3に進むか、後で使用する(24時間の最大値)、4℃でチップを格納します。

3。セル負荷

  1. プレートからPBSを除去して、細胞培地でマイクロシステムを埋める。媒体とのチャネルを飽和させるために1時間インキュベートしてみましょう。
    注:分子阻害剤のような薬物を含む実験のためには、右の濃度の薬剤を含む培地でチャンネルをプレインキュベートすることをお勧めします。さらに、いくつかの薬物は、有効濃度を低下させるPDMS構造体に可溶化する傾向がある。一部のソリューションは、この問題11-12に対抗するために提案されている。
  2. 浮遊DCを削除し、培養液でフラッシュすることにより、半接着細胞を回収する。血球計数器を用いて細胞を数える。
    注:核イメージングでは、ヘキスト33342染色はインで事前に達成することができ完全培地中の200 ng / mlの時に染料と30分の間に2×10 6の細胞をcubating。プロトコルを続行する前に色素の過剰を取り除くために遠心分離により二回洗浄します。
  3. 5分(時間および速度は細胞の種類に応じて異なっていてもよい)中に300×gで細胞を遠心し、培地を捨てる。 20×10 6細胞/ mlの濃度に達するようにペレットを希釈する。
  4. プレートから培地の過剰を削除し、マイクロピペットを用いて、PDMS構造のエントリの穴を空にします。各エントリの穴に1×10 5個の細胞の量に到達するために細胞溶液5μlのエントリを入力します。
    NOTE:高細胞密度は、チャネルによる細胞の接触に有利に働くことが要求される。低細胞密度は、チャネルと、実験の失敗の内側の細胞の少数をもたらし得る。
  5. インキュベーター内で37℃で30分間、マイクロチップをインキュベートする。実験皿に完全培地の2ミリリットルを追加します。
    注:全体のPDMS構造は、bになりませんeは実験中の細胞の乾燥を避けるために覆わ。 2mlの十分でない場合、完全にPDMS構造体を覆うように、より多くの培地を加える。

4。イメージング

  1. 顕微鏡下のプレートを配置する前にレンズクリーニングティッシュと料理の外部底面を清掃してください。
  2. 多数の細胞内移行を分析するには、CO 2と温度を装備ビデオ顕微鏡で10倍と広い視野照明( 図3)を使用します。細胞追跡を容易にするために、ヘキスト染色およびUV光は(ステップ3.2参照)を使用することができる。移行は、移行​​中に細胞構造の高解像度を得るために、共焦点顕微鏡を用いて分析することができる。
  3. 10Xのタイムラプス顕微鏡検査のために、期待されるセル速度(5ミクロン/分の速度で移行した樹状細胞のため、通常2分)に応じた時間周波数を選択します。
    注:ここに記載されているプロトコルは、nを行いますオトは、細胞遊走パラメータの分析を含む。いくつかのポイントは、時間経過の映画から情報を抽出するためにどのように進めるかについて、読者に助言するために議論に記載されています。

Access restricted. Please log in or start a trial to view this content.

結果

各実験において、PDMSの表面は。前と(ステップ2.4)で洗浄した後、図2に示す蛍光分子、PLL-gの-PEGでコーティングされたチャネルを調査の関心に適合分子でコーティングされる。このような実験は、チャンネル内のコーティングの均一性を制御することができる。

セルの負荷後に、ビデオ顕微鏡は、細胞移動に追従して行うことができる。

Access restricted. Please log in or start a trial to view this content.

ディスカッション

ここでは、単一の実験で多数の細胞の遊走特性を研究するための方法として、マイクロチャネルからなる装置を記載している。この実験系は、内因性の遊走細胞によって組織に見閉じ込められた環境制約を模倣。しかし、単一の次元に移行を強制することにより、自動細胞追跡とmeasurablesの抽出( 図5)を容易にします。我々はまた、我々のデバイスは、蛍光顕微鏡と互換性があ?...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者らは、開示することは何もありません。

謝辞

著者は大幅キュリー研究所(CNRS UMR144)でPICT IBiSAプラットフォームを認める。この作品は、からの補助金によって賄われていた。AM.LD欧州研究評議会(Strapacemi 243103)、協会国立はMPと午前·ラ·ルシェルシュ(ANR-09-PIRI-0027-PCVI)、InnaBiosanté基盤(Micemico)を注ぐ。 AM.LD.にLDとERC Strapacemi若手研究助成金

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Polydimethylsiloxane (PDMS)GE SiliconesRTV615Package of 90% silicone base and 10% curing agent
Core sample cutterTed Pella Int.Harris Uni-CoreDiameter 2.5 mm
Glass-bottom dishWPIFluorodish FD 35-100
Ultrasonic cleanerBranson UltrasonicsBranson 200
Plasma cleanerHarrick PlasmaPDC 32 GFor small samples (35 dishes). A bigger version is also available
Fibronectin from bovine plasmaSigma AldrichF0895
PolyLysine grafted PEG (Pll-g-PEG)SusosPLL(20)-g[3.5]-PEG(5)
Hoechst 33342Sigma AldrichB2261
Y27632TOCRIS1254

参考文献

  1. Lauffenburger, D. A., Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell. 84 (3), 359-369 (1996).
  2. Lämmermann, T., et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 453 (7191), 51-55 (2008).
  3. Schor, S. L., Allen, T. D., Harrison, C. J. Cell migration through three-dimensional gels of native collagen fibres: collagenolytic activity is not required for the migration of two permanent cell lines. J. Cell. Sci. 41, 159-175 (1980).
  4. Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1-22 (2012).
  5. Faure-André, G., et al. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science. 322 (5908), 1705-1710 (2008).
  6. Renkawitz, J., et al. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11 (12), 1438-1443 (2008).
  7. Jacobelli, J., et al. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat. Immunol. 11 (10), 953-961 (2010).
  8. Irimia, D., Charras, G., Agrawal, N., Mitchinson, T., Toner, M. Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip. 7 (12), 1783-1790 (2007).
  9. Moreau, H., et al. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity. 37 (2), 351-363 (2012).
  10. Heuzé, M. L., Collin, O., Terriac, E., Lennon-Duménil, A. M., Piel, M. Cell migration in confinement: a micro-channel-based assay. Methods Mol. Biol. 769, 415-434 (2011).
  11. Ren, K., Zhao, Y., Su, J., Ryan, D., Wu, H. Convenient method for modifying poly(dimethylsiloxane) to be airtight and resistive against absorption of small molecules. Anal. Chem. 82 (14), 5965-5971 (2010).
  12. Ren, K., Dai, W., Zhou, J., Su, J., Wu, H. Whole-Teflon microfluidic chips. PNAS. 108 (20), 8162-8166 (2011).
  13. Maiuri, P., et al. The first World Cell Race. Curr Biol. 22 (17), 673-675 (2012).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

84

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved