このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
四次元(4D)画像化は、脊椎動物の神経末端を生体内エンドソームの2種類のうちの挙動および相互作用を研究するために利用される。これらの小さな構造の移動は、例えばエンドソーム融合およびエキソサイトーシスなどのイベントの確認を可能にする、三次元を特徴としている。
四次元(4D)光イメージングは、ガーターヘビの薄い腹横筋筋の運動神経終末内の小さな構造の挙動を研究するために使用されている。生データは、3Dのz-スタックの経時的配列を含む。各スタックは400-1,500 nmの区切られた焦点面でのエピ蛍光光学系を用いて取得4月20日の画像が含まれています。このようなフォーカスの調整などの画像スタックの取得の手順は、励起波長の切り替え、及びデジタルカメラの動作は、画像レートを最大化し、光露光から組織の損傷を最小限に抑えるために可能な限り自動化されている。取得後、画像スタックのセットは、空間分解能を向上させるためにデコンボリューションされ、所望の3Dフォーマットに変換され、4D「映画」ことが求められる実験データに応じて、コンピュータベースの様々な分析に適しているの作成に使用される。 1つのアプリケーションが、神経末端-macroendosomes(MES)で見つかったエンドソームの二つのクラスの動的挙動の研究であるおよび(有害事象)、サイズが(両方のタイプの200〜800 nm)の酸性エンドソームは、回折限界またはその付近である。各時点での3次元情報へのアクセスは、従来のタイムラプス撮影に比べていくつかの利点を提供する。特に、構造物の動きの大きさと速度は、鮮明な焦点を失うことなく経時的に定量することができる。 4Dイメージングからのデータの例は、MEは、それらがエキソサイトーシスではなく、単に垂直方向に離れて単焦点面から移動していることを示唆し、原形質膜に接近し、消滅することが明らかになった。また、各3正射影で見たように、2つの色素を含有する構造体の間の重複の視覚化によって、有害事象のMEとの推定上の融合で明らかにした。
生体組織のタイムラプスイメージングは、単一の時点で撮像され、固定または住んで調剤に理解されることができない力学構造と機能の関係を視覚的にアクセスを提供します。しかし、多くの場合、一時的な情報へのアクセスのためのトレードオフは、光学解像度の低下である。高開口数油浸対物レンズは、代替として水浸漬またはドライの目標を残しているため、焦点の彼らの狭い範囲の生体組織に非実用的である。さらに、共焦点光学系によってもたらさ高解像度照明比較的高レベルの1,2必要から、光毒性に起因するいくつかの生体調製物中で利用することができない。最後に、いくつかのリアルタイムまたは時間経過の光学技術が利用可能であるが強化された解像度を提供することが、その適用は、関心のある構造は対物レンズ1の数百ナノメートル内に配置することができる製剤に限定されている。方法について説明比較的低コストの機器を利用した汎用性のある、さらにより一般的に使用されるタイムラプス技術と比較して改良された解像度を提供しています。なお、各施設ならびに撮像施設での使用を意図している。
この方法は高感度デジタルカメラで、迅速に、わずかに異なる焦点面(Zスタック)で画像のセットを取得するために設計されたハードウェアと組み合わせて、従来の落射蛍光顕微鏡を利用しています。それぞれのzスタックはデジタル分解能を高めるためにデコンボリューションされる。 3Dタイムラプス(4D)画像の特徴の一つは、細胞小器官または他の構造の移動を正確に追跡している。適切に設定すると、画像化された構造は、フォーカスの外に出ないし、すべての3方向の動きを観察し、定量化することができる。染色された構造は、単に狭い焦点面の上または下に漂流して、1つ以上の時間経過フレームにわたって消滅するためにこのように、それは不可能です。この方法はまた、相互作用し、可能FUを評価するための高感度なツールとして機能します小さな構造のシオン。回折限界(数百nm)の近くで、従来の落射蛍光または構造の共焦点画像がマージされた画像は、それぞれのラベル3の重なりを見せても融合を確認していません。融合は示唆し、それは、オブジェクトが回折限界未満である距離だけ水平方向または垂直方向に分離されている可能性が残る。三又は四次元イメージングは、対照的に、3つの直交方向のそれぞれにおいてオブジェクトの表示が可能になる。すべての3つのビューにおける融合の外観は、確実性のレベルを増加させる。そして、いくつかの生きた標本で、指向性または両方のラベルは、時間に一緒に移動すると推定される融合されたオブジェクトのブラウン運動は、さらなる証拠を提供しています。もちろん、とき回折限界の背景から、こだわりの構造における確実性のレベル、またはそれらが2色素(融合)が含まれていることを示すの近くに、絶対的なものではない。例えば、蛍光共鳴エネルギー移動(FRET)のような該当する場合、専門的な技術が、4は 、より適切である。
Access restricted. Please log in or start a trial to view this content.
1。超生体色素で準備を染色
2。イメージングのための準備を設定します
3。目的のフィールドの深度およびIMAの数を確立タイムラプスフレームあたり希望GES
4。タイムラプスフレームレートを選択します。
スムーズな動き、相互作用または融合現象9などの経時変化を解決するだけで十分である割合を実験によって選択します。オーバーサンプリングは、不必要に光への露出を増加させながらサンプリングの下では、モーションアーチファクト(サンプリング誤差)が生じることがあります。単一の長いシーケンスまたは同じ調製、比較的小さな総時間間隔でそれぞれの(からのいくつかの反復配列のいずれかを収集する例えば10時間点X 30秒間隔= 5分)。可能な場合は、およそ存在する場合、製剤全体のドリフトを含め、移動速度を推定するために継続的なエピ蛍光照明との準備を表示します。
5。特定の調製のためのすべてのライブイメージングを完了
爬虫類の製剤は、一般的に冷却し、より長い場合には、約1〜2時間、堅調に推移。
6。、所望の用途に応じてデータを分析
Access restricted. Please log in or start a trial to view this content.
示されたデータは、( 図3に低域と高倍率のビューを参照してください。エンドサイトーシスの色素は(FM1-43)の取り込みは、各繊維末端を埋めるヘイズが作成されます)ヘビ神経筋端末からのものであり、特に、macroendosomes(MES)と酸性エンドソーム(AES)これらの端子5。のMEは、神経活動10中に大エンドサイトーシスによって作成され、活動が6を停止?...
Access restricted. Please log in or start a trial to view this content.
4Dイメージングの最も重要な側面は、露光の期間と強度の管理である。光退色は、画像の信号対雑音比を減少させ、フルオロフォアの選択を含む種々の要因に応じて、問題であってもなくてもよい。生体組織(光毒性)に対する非特異的損傷は、光退色に関連して、時には目的のために2,12又は微分干渉コントラスト(DIC)のような適切な明視野光学系を有する形態学の検査により設?...
Access restricted. Please log in or start a trial to view this content.
著者らは、競合する経済的利益を宣言していません。
この作品は、健康グラントNS-024572(RSW)の米国国立研究所によってサポートされていました。
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Equipment | |||
SGC5 | Biotium, Hayward, CA | 70057 | Final conc: 10 mM |
FM1-43FX | Invitrogen, Carlsbad, CA | F35335 | Final conc: 7 mM |
LysoTracker Red | Invitrogen, Carlsbad, CA | L7528 | Final conc: 0.2 mM |
Reptilian Ringers pH 7.2 | |||
NaCl | 145 mM | ||
KCl | 2.5 mM | ||
CaCl2 | 3.6 mM | ||
MgSO4 | 1.8 mM | ||
KH2PO4 (Dibasic) | 1.0 mM | ||
HEPES | 5.0 mM | ||
High KCl Reptilian Ringers pH 7.2 | |||
NaCl | 86 mM | ||
KCl | 60 mM | ||
CaCl2 | 3.6 mM | ||
MgSO4 | 1.8 mM | ||
KH2PO4 (Dibasic) | 1.0 mM | ||
HEPES | 5.0 mM | ||
High Sucrose Ringers pH 7.2 | |||
NaCl | 145 mM | ||
KCl | 2.5 mM | ||
CaCl2 | 3.6 mM | ||
MgSO4 | 1.8 mM | ||
KH2PO4 (Dibasic) | 1.0 mM | ||
HEPES | 5.0 mM | ||
Sucrose | 0.5 M (17.1 g/50 ml) | ||
Axioplan 200 inverted microscope | Carl Zeiss, Thornwood, NY | www.zeiss.com | |
N-Achroplan 63X water objective; n.a.=0.9; Working distance=2.4 mm | Carl Zeiss, Thornwood, NY | www.zeiss.com | |
DG4 combination light source/excitation filterwheel switcher | Sutter Instruments, Novato, CA | 175W Xenon arc lamp | www.sutter.com |
Lambda 10-2 emission filterwheel switcher | Sutter Instruments, Novato, CA | www.sutter.com | |
Sensicam CCD camera | Cooke Instruments, Tonawanda, NY | www.cookecorp.com | |
Cascade 512 CCD camera | Photometrics, Tucson, AZ | www.photometrics.com | |
Imaging dishes- made in-house-11 cm dia.; 25 mm dia. #1 coverslip embedded; magnetic pins | |||
Software | |||
Slidebook 5.0 | Intelligent Imaging Innovations, Denver, CO | Deconvolution; Drift correction;3D and 4D data presentation | www.intelligent-imaging.com |
IMARIS 7.5.2 | Bitplane, South Windsor, CT | Drift correction; 3D and 4D data presentation | www.bitplane.com |
AfterEffects CS6 | Adobe, San Jose, CA | Drift correction | www.adobe.com |
ImageJ 1.46 | National Institutes of Health, Bethesda, MD | Multiple plugins available; Stereo pair construction | http://rsbweb.nih.gov/ij |
Zeiss LSM | Carl Zeiss, Thornwood, NY | Stereo pair construction | www.zeiss.com |
Access restricted. Please log in or start a trial to view this content.
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved