Method Article
このプロトコルは、一次LGR5-高い正のオルガノイド文化やレトロウイルス形質導入のその後のパフォーマンスを説明しています。これは配信の導入遺伝子のCre誘導性過剰発現またはノックダウンを可能にし、機能的研究は、in vitro器官における新規で行うことができるようになり モデル系。
本質的な成長は、EGF、ノギン、およびインビトロで原発3D上皮構造の拡大を続ける文化に私たちを可能にする、R-スポンジンを要因とLGR5陽性幹細胞は補うことができる。どちらもオルガノイドと呼ばれるこれらの「ミニ·ガッツ」のアーキテクチャと生理学的特性は、密接にそれらのインビボの対応に似ている。これは、彼ら小腸上皮のための魅力的なモデル系になります。レトロウイルス形質導入を用いて、機能的な遺伝学は、現在、条件付き遺伝子の過剰発現またはノックダウンすることにより行うことができる。このビデオでは、オルガノイド文化、レトロウイルスの生成、およびin vitroでの小腸上皮の表現型分析を支援するオルガノイドのレトロウイルス形質導入の手順を示しています。レトロウイルス媒介性の遺伝子発現と組み合わせたこの小説器官型モデルシステムは、costlを必要とせずにin vitroでの遺伝子機能の迅速な分析のための貴重なツールを提供していますトランスジェニック動物のためのyおよび時間のかかる世代。
ハイスループット機能遺伝学は、現在の基礎科学と医学を改善するために、身体の私たちの生物学的理解を高めるために必要とされる。マウス遺伝学、それは時間がかかり、コスト高でもあるが、in vivoでの遺伝子機能を調べるためのゴールドスタンダードとなっている。安価でありながら細胞株は、他の一般的な選択で、より高いスループット能力を有する。しかしながら、それらがインビボで見られる適切な微小環境、それにより生理学的応答を再現することができないことによって妨害されているため、コスト/時間効率の高スループット分析しばらくが容易なハンドルモデル系のための明白な必要性があるin vivoでのトランスジェニック(TG)マウスの実験で観察生理学的応答を模倣する。
内胚葉上皮そのようなモデル系では2009年1で登場しました。LGR5陽性腸管幹細胞の発見から得られた知識の中にあった幹細胞の維持に必要な細胞外マトリックスおよび成長因子に対応するニッチについての情報。この情報を利用することもオルガノイド2としても知られている「ミニ勇気を」確立することが可能になりました。最近オルガノイドが「enteroids」と呼ばれているインビトロ培養のためのコンセンサス命名法は、3示唆された。細胞株と同様に、オルガノイドは拡大を続けるとのリガンドおよび阻害剤で処理するのは簡単です。しかし、代わりに二次元であることから、それらは三次元自己組織化陰窩 - 絨毛組織を保持する構造体ならびに幹細胞および小腸(SI)の分化した細胞系統である。オルガノイドは、管腔領域を囲む上皮細胞の単層から成る。突出出芽構造は幹細胞区画を含む小腸の陰窩に相当する。前駆細胞は、それらマイルのように分化する出芽構造の先端から始まる最終分化細胞が内腔に流されている上皮内層に向かってすりおろす。細胞株と比較して、このエキソビボシステムは、より密接に正常な生理機能を再現し、したがって小腸上皮のための有望なモデル系である。
レトロウイルス形質導入のこのビデオプロトコルでは、この新規オルガノイド培養系でex vivo遺伝子機能研究を可能にする方法を提示する。私たちは、ステップ·バイ·ステップ方式でオルガノイド文化を記述することで起動し、導入手順が続くレトロウイルスの生成を実証することによって継続する。最後に、トラブルシューティングのための追加的なアドバイスをする部分があります。この技術の利点は、それが腸上皮に恒常性、細胞運命決定および細胞 - 細胞相互作用を研究するために、ライブイメージング又は薬物スクリーニングと組み合わせることができることである。それらの単純な構造と高速回転率に、オルガノイドは、理想的なモデルSを表す成体幹細胞生物学を研究するためのテム。さらに、レトロウイルス形質導入は、予め確立されたトランスジェニックマウスおよびヒト患者試料由来するオルガノイドに適用することができる。ノックイン及びノックアウトアプローチはヒトに拡張することはできませんように、ヒトのSIオルガノイドは、魅力的な代替を構成している。
要約すると、レトロウイルス形質導入による遺伝子操作が人間由来の組織での研究のための新たな道を開いている間に、それによって、マウスの遺伝学および細胞株を補完する、マウスまたはヒト組織サンプルから得られた小腸オルガノイドにおける表現型分析を可能にする。レトロウイルス形質導入はゲイン-可能にし、機能喪失研究は、オルガノイド培養系4で実行される。これは、リデュース(削減、洗練、および置換)に従ってながら、遺伝子の機能、成体幹細胞生物学および疾患を調べるための貴重な資源となる。
以下のプロトコールで使用される全てのマウスは、特定病原体を含まない条件下で維持し、全ての手順は、英国内務省の規制に従って行った。
の調製
2培養小腸(SI)オルガノイド
注:特に明記しない限り、全てのインキュベーションは、加湿インキュベーター中、37℃、5%CO 2で行われる。生きている細胞と接触する機器および試薬は、無菌でなければならない。
それは地下マトリックス(マトリゲルまたはBME)は播種時に広がるから落下防ぐように組織培養プレートを事前に温めることが重要です。また、基底行列は常に氷上で維持されるべきである。 -20℃と融解で保存使用前に氷上で。
3プリ感染SIオルガノイドの治療
注: 図1は、形質導入手順を示す。
4。ウイルス産生
5。オルガノイドフラグメント準備
6。レトロウイルス形質導入
感染オルガノイドフラグメントの8播種
9。選択
10感染後のSIオルガノイドの治療
感染およびexprの11の確認目的の遺伝子のession /抑制
オルガノイドは、中央管腔が原因死細胞( 図2)の存在のために暗くされたときに分割される準備ができている。前処理オルガノイドの2〜3日後のラウンド嚢胞の形態( 図3)を採用する必要があります。これは、安定した組み込みを得る機会を高めること、幹細胞の数を増加させる。ウイルスペレットのサイズに起因ペレットサイズの細胞破片の変化の寄与に、ウイルス上清の遠心分離後の最も可能性を変化させることができる。形質導入効率に明確な相関関係が観察されていない。安定な組込みを有するものが残りますしながら、選択手順非形質導入オルガノイド中に、死んでしまう。 MSCV-eGFPのレトロウイルスからの蛍光タンパク質は、形質導入( 図4)は、次の2〜3日以内に、嚢胞性形態を有するオルガノイドを、生き残っ由来の細胞で観察することができる。
=「図1」のfo:コンテンツ幅= "6インチ" SRC = "/ファイル/ ftp_upload / 51765 / 51765fig1highres.jpg"幅= "600" />
図1。レトロウイルス形質導入手順の概略図。前に感染オルガノイドへは、前処理された彼らは、嚢胞性構造(ステップ1)を採用するまでENRWntNicを使用している。白金-E細胞は、パッケージング細胞株として用いられ、それらは70〜80%コンフルエントに達するまで培養する。その後、それらは、PEIを用いてレトロウイルス構築物でトランスフェクトする。ウイルスは、2日後(ステップ2)収穫する。オルガノイドは、1〜10細胞(ステップ3)を含有する断片を得るためにトリプシン処理され、次いで(ステップ4)を感染させる。感染効率(ステップ5)を大きくするピノキュレーションに続いて、感染したオルガノイド断片が播種される(ステップ6)、2-3日後に安定した統合を陽性クローンの選択を行うことができる(ステップ7)。
1765fig2highres.jpg "幅=" 500 "/>
図2文化の4-6日後のオルガノイドの代表的なイメージが。ルーメンは、それが暗く見えること、死細胞で満たされている。この段階でオルガノイドを継代する準備ができました。
3〜4日間ENRWntNic培地で培養小腸オルガノイドの図3。代表画像。オルガノイドは、嚢胞の形態を採用しています。
ウイルス性導入遺伝子発現(B、eGFPの)を示して小腸オルガノイドの図4。代表的なイメージは、(a)。
ADVANCED DMEM / F12 +++ | |
4週間、4℃で保存 | |
高度なDMEM / F12 | 500ミリリットル |
グルタマックス100倍 | 5ミリリットル |
ヘペス1Mの | 5ミリリットル |
抗生物質100X | 5ミリリットル |
ENRWntNic培地(20ミリリットル用) | |
2週間、4℃で保存 | |
高度なDMEM / F12 +++ | 7.2ミリリットル |
B27サプリメント(50×) | 400μlの |
N2サプリメント(100×) | 200μlの |
のn-アセチルシステイン(500ミリモル) | 50μlの |
マウスEGF(500μg/ ml)を | 2μlの |
マウスノギン(100μg/ ml)を | 20μlの |
R-スポンジンコンディットionedメディア | 2ミリリットル |
のWnt3a馴化培地 | 10ミリリットル |
ニコチンアミド(1 M) | 200μlの |
伝達媒体(20ミリリットル用) | |
新鮮な準備 | |
ENRWntNicメディア | 20ミリリットル |
Y-27632(10μM) | 20μlの |
ポリブレン(8μg/ ml)を | 20μlの |
ENR培地(20ミリリットル用) | |
4週間、4℃で保存 | |
高度なDMEM / F12 +++ | 17.4ミリリットル |
B27サプリメント(50×) | 400μlの |
N2サプリメント(100×) | 200μlの |
のn-アセチルシステイン(500ミリモル) | 50μlの |
マウスEGF(500μg/ ml)を | 2μlの |
マウスノギン(100μg/ ml)を | 20μlの |
R-スポンジン馴化培地 | 2ミリリットル |
プラチナ-E細胞のための培地(500ミリリットル用) | |
12週間、4℃で保存 | |
のDMEM | 449.45ミリリットル |
ウシ胎児血清(FBS) | 50ミリリットル |
ピューロ(1μg/ ml)を | 50μlの |
ブラストサイ(10μg/ ml)を | 500μlの |
プラチナ-E細胞のための高度なDMEM / F12 +++、ENRWntNicメディア、トランスダクション培地、ENR媒体及び媒体のため、表1のメディア組成物。
高い形質導入効率を達成するために特定の側面は重要である。彼らは丸い嚢胞形状を採用するまで、一つはENRWntNicメディアとのオルガノイドの前処理である。これは、幹細胞の数とそれによって導入遺伝子の安定な組み込みを得る、ならびに形質導入手順を通じてSIのオルガノイドの生存率を増加させる機会を増大させる。別のパラメータは、スピノキュレーション以下のインキュベーション時間である。貧弱な形質導入効率およびオルガノイドの貧しい生存率の短すぎたり長すぎインキュベーションの結果であった。それは有意に形質導入オルガノイドの割合を増加させるが、スピノキュレーション工程は必須ではない。最後に、高力価のウイルスは、正常形質導入するためのキーである。これは、パッケージング細胞株およびウイルスの種類に依存する。プラチナ-E細胞株およびマウス幹細胞ウイルス(MSCV)の組み合わせは、オルガノイドの形質導入のための十分に高い力価を産生することが見出された。
ve_content ">以下は、成功した形質導入を達成することに役立つトラブルシューティングのためのヒントを紹介します。パッケージング細胞株のトランスフェクションが悪い場合、最初に細胞の密集度が70〜80%の間とのインキュベーション時間に確認してくださいプールされたPEI-DNA混合物を20〜30分の間にある。形質導入の際オルガノイドの生存は非常にフラグメントサイズに依存します。長すぎるトリプシン処理フラグメントの大半が3未満の細胞からなるさせ、それによってオルガノイド生存性を減少させます。もう一つの要因であるのWnt馴化培地の活性は、活性が低すぎる5μMの作業濃度にCHIR99021の添加を介して昇圧された場合は、生存率を増加させることができる。CHIR99021が増加Wntシグナル伝達をもたらす、GSK3を阻害し、さらに、Y-27362、これを防止オルガノイドが形質導入前にフラグメント(1-10個の細胞を含む)に破壊されているのでアノイキスは、オルガノイドバイバを向上させるために形質導入培地に添加されている。のよう60;スピノキュレーション後のインキュベーション時間が6時間を超えるべきではない、上記の。貧しい形質導入が認められた場合最後に、ウイルス力価及びレトロウイルスベクターインサートのサイズ制限に影響を与える前述の要因を考慮すべきである。ノックダウンの効率は、miRNAに大きく依存する。効率は、標的遺伝子とmiRNAの組み合わせに応じて変化するので、それが最も効果を発揮するものを同定するために効率スクリーニングを行う価値がある。技術はオルガノイドシステムの上皮現象に限定されています。将来的には、それぞれ、免疫系に由来する成分と、病原体または再構成の共培養を介して感染性または免疫媒介性疾患を研究することが可能かもしれない。さらに、レトロウイルスは、比較的小さいサイズの挿入物を運ぶことができる。したがって、天然に存在する調節領域は除外されなければならないので、導入遺伝子の発現は、それを模倣することができない内因性遺伝子。上述したように、ノックダウン効率は、標的遺伝子およびmiRNAに依存している。適切なノックダウン効率とのmiRNAが見つからない場合には、その特定の標的遺伝子のための技術の使用を制限することができる。
理論的には、オルガノイドは、細胞株に使用されるすべての標準化された操作的な技術と互換性があります。レトロウイルス形質導入は、4に報告された最初の方法であったが、近年、BAC(細菌人工染色体)-transgenesis 5利用可能になった。 2〜3週間の総発電時間で、パッケージング細胞株へのウイルスプラスミドのトランスフェクション後に、トランスジェニック(TG)マウスの世代よりもかなり高速である。幹細胞ならびに腸上皮のすべての分化した細胞系統を含むながら、in vivoでの陰窩-絨毛アーキテクチャを維持することにより、オルガノイド培養系は、TG動物および以前に使用した細胞培養の間のギャップを埋める。
プロトコルは、ここで説明するゲイン-と機能の研究の無損失を通じてin vitroで内胚葉上皮の表現型の解析を実行するための方法を提供する。これはtgマウスの最小限の必要性と、成体幹細胞生物学の生理学的に関連する問題に対処することが可能になります。例えば、条件付きノックアウトマウスの生成は周産期致死6新生児の変異体から誘導されるオルガノイドを使用することによって回避することができる。さらに、この技術は、追加のノックダウン7,8を行うことにより、パラログの役割を研究するために以前に確立されたノックアウトマウス由来のオルガノイドに適用することができる。小腸オルガノイドの確立に続いて、元の培養プロトコルの適合は、膵臓、肝臓、大腸、胃上皮9-11の培養を可能にした。さらに、ヒトの腸オルガノイド及び腫瘍オルガノイドは、一次アデン、正常なヒトの生検に由来しているOMAおよび大腸癌生検10。ウイルス感染プロトコルを容易オルガノイドこれらのタイプに拡張し、ヒト由来の組織において機能的研究を行うの前例のない方法を提供することができる。
まとめると、小腸オルガノイドのレトロウイルス形質導入は、幹細胞の維持、分化、および細胞運命決定、ならびに細胞シグナル伝達および細胞 - 細胞相互作用を調べるための貴重な資源である。
The authors have nothing to disclose. The authors have no conflict of interest declared.
クーBKとMustata RCは医学研究審議会(MRC)でサポートされているウェルカムトラストとアンダーソン·ロルフAからのサー·ヘンリー·デール·フェローシップでサポートされています。フィンクJはウェルカムトラスト4年間の博士課程 - プログラムによってサポートされています。
Name | Company | Catalog Number | Comments |
Advanced DMEM/F12 | Invitrogen | 12634-034 | |
Glutamax 100x | Invitrogen | 35050-068 | |
HEPES 1 M | Invitrogen | 15630-056 | |
Penicillin-streptomycin 100x | Invitrogen | 15140-122 | |
B27 supplement 50x | Invitrogen | 17504-044 | |
N2 supplement 100x | Invitrogen | 17502-048 | |
n-Acetylcysteine 500 mM | Sigma-Aldrich | A9165-5G | |
Mouse EGF 500 µg/ml | Invitrogen Biosource | PMG8043 | |
Mouse Noggin 100 µg/ml | Peprotech | 250-38 | |
R-Spondin conditioned medium | The conditioned media is generated from HEK293 cells, for details see Sato and Clevers 2013. | ||
Wnt conditioned medium | The conditioned media is generated from L cells, for details see Sato and Clevers 2013. | ||
Nicotinamide 1 M | Sigma | N0636 | |
Y-27632 10 µM | Sigma | Y0503-1MG | |
Polybrene (8 µg/ml) | Sigma | H9268-5G | |
Standard BD Matrigel matrix | BD Biosciences | 356231 | Basement Matrix Extract (Cultrex PathClear BME Reduced Growth Factor Type 2, 3533-005-02) supplied by AMSBIO can be used as an alterntive. |
24-well Plate | Greiner Bio One | 662960 | |
48-well Plate | Greiner Bio One | 677980 | |
CHIR99021 | Sigma | A3734-1MG | |
Platinum-E cells | Cell Biolabs | RV-102 | |
Puromycin | Invitrogen | A1113802 | |
Blasticidin | Invitrogen | A1113902 | |
Polyethyleneimine (PEI) | Polysciences | 23966 | |
opti-MEM | Life Technologies | 51985-034 | |
TrypLE | Invitrogen | 12605-010 | |
Parafilm | Sigma | P7793-1EA | |
4-OHT | Sigma | H7904 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved