JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、 ショウジョウバエの成体および横方向の視点から幼虫の変異体の表現型の高品質のデジタルビデオを取得するためのシンプルで広くアクセス顕微鏡技術が記載されている。

要約

キイロショウジョウバエは、神経系の機能を研究するための強力な実験モデル系である。神経系の機能障害を引き起こす遺伝子突然変異は、多くの場合、実行可能な幼虫と適切にテキストを記述するか、完全に単一の写真画像では表現が困難運動の欠陥表現型を持っている大人を作り出す。科学的な出版の現在のモードが、しかし、原稿を伴うために補足資料などのデジタル映像メディアの提出をサポートしています。ここでは、横方向の両方の観点から、ショウジョウバエの幼虫と大人の表現型の高品質のデジタルビデオを取得するためのシンプルな、そして幅広いアクセスができる顕微鏡技術が記載されている。それは異常な機関車の挙動に微妙な違いや変化の観察と分析を可能にするため、サイドビューから幼虫と大人の運動のビデオが有利である。私たちは正常に視覚化し、aberran定量化するために技術を使用していたtはグルーミングを含む成人の変異体の表現型と行動に加えて、3齢幼虫に行動をクロール。

概要

一般的な果物飛ぶキイロショウジョウバエは、神経系1-3の機能を研究するための強力な実験モデル系である。進化人間と神経系の構造と機能の保全だけでなく、遺伝子操作の容易性と遺伝子ツールの広大な配列は、ヒトの神経変性疾患4をモデル化するために、ショウジョウバエの初演生物を作る。神経系の機能障害を引き起こす遺伝子突然変異は、多くの場合、障害のある歩行を実現可能変異体幼虫と大人のショウジョウバエにつながる。神経系欠損変異株で観察された表現型は、歩行、異常な調整、および成人における痙性運動の速度だけでなく、体壁筋系の蠕動収縮の欠損、および幼虫の部分的な麻痺の減少、。これらの表現型は、ハイスループット遺伝子スクリーニングおよび突然変異体の幼虫5の移動アッセイの開発に利用されている、運動機能障害を定量化し、神経系の機能に必要な遺伝子を同定することを目的と6および成人7-10 ショウジョウバエ 。これらのアプローチは、幼虫と大人の機関車の挙動を定量化するために極めて有用であるが、これらはそれぞれ、特定の異常な行動についての定性的な情報を伝えることができない。変異型3齢幼虫が行動アッセイで変更された歩行パラメータを示すことができるしながら、これはクロール·サイクル中にリズミカルな蠕動性収縮、協調の一般的な不足、または後部胴体の部分的な麻痺の変化の結果である場合、それは不明かもしれ壁の筋肉組織。ここでは、 ショウジョウバエの成体および横方向の視点から幼虫機関車の表現型の高品質のデジタルビデオを取得するためのシンプルな、そして幅広いアクセスができる顕微鏡技術が記載されている。横視点から取得されたデジタルビデオは、locomotivの微妙な違いを直接観察や分析を可能にするより有益なサイドビューの方向から電子の振る舞い​​。

プロトコル

1ステレオ顕微鏡システム

注:このプロトコルは、簡単にビデオを取得する機能を備えたデジタルカメラに接続された事実上すべての実体顕微鏡システムに適用可能であるが、詳細は(材料/機器の表)の研究室で使用されるシステム上に設けられている。

  1. 商業デジタルカメラに接続された三眼実体顕微鏡を使用してデジタルビデオを取得します。
  2. 結合するために実体顕微鏡の三眼ポートへの商用デジタルカメラ、実体顕微鏡の光電管ポートの½xのCマウントを取り外し、1X Cマウントと交換します。
  3. 1X Cマウントデジタルカメラカプラー(43ミリメートルスレッド)をマウントします。
  4. カメラカプラーにマウント2のステップダウンリング、48ミリメートル、43ミリメートルと48ミリメートル58ミリメートル、デジタルカメラ用レンズアダプターキットデジタルカメラカプラからの接続をブリッジする。
  5. レンズアダプターキットにデジタルカメラをマウントします。
  6. 顕微鏡の倍率は約12倍(毎秒30フレーム、640×480ピクセル)を合わせた倍率デジタルカメラセットの光学ズームでビデオを取得します。注:実体顕微鏡の倍率は三眼港の新たに再構成1X Cマウントに合わせて補償しなければならない。

2イメージングショウジョウバエ三齢幼虫

  1. マーカーキャップの側面には、カメラの液晶モニターで観察された垂直視野の4分の1に⅓約占めるようにデジタルカメラに接続された実体顕微鏡の黒ステージプレートにテープ油性マジックを。それらはカラーコードを使用して画像化されている幼虫の遺伝子型を区別することができる色の品揃えに来るので、幼虫の撮影を行うためにステージとして、マーカートップを使用してください。
  2. 細かい点でのマーカートップの表面にデジタルカメラの液晶モニターで観察視野を画定マーカー。
  3. 画像への3齢幼虫を選択します。 3齢幼虫を選択するための基準は、体長、ライフサイクルの幼虫期の間の食物源から出現、前方および後方気門の存在、と口装置11の下顎のフックの構造だった。幼虫は水中で徹底的に洗浄することにより、クリーンであることを確認してください。
  4. 光ファイバー照明システムからの光を上方から永久マーカー上部ステージを照らす。最適な照明を提供するために入射光の角度を調整する。
  5. 油性ペン上部の端に顕微鏡を焦点。デジタルビデオを取得開始します。
  6. 視野( 図1)の方を向いている幼虫の前で、ちょうど視野外、約75°離れて垂直軸からのマーカーのキャップの側面に幼虫を置きます。注:マーカーキャップ側の幼虫の配置は、番目の記録的動きにカメラを可能にする横方向の視点からの電子幼虫。それは彼らが、マーカーキャップの側面から落下しないように、水で湿った幼虫を維持するのに役立ちます。ケアは、それが視野にわたってクロールのように過剰な量を幼虫に付着するようにあまりにも多くの水を使用しないように、しかし、注意しなければならない。
  7. そっと突くと、視野全体にクロールすることを強制するために、小さな絵筆で幼虫をprod。幼虫はほとんど協力しておらず、多くの場合、彼らはまっすぐに、フィールド全体にクロールする前に、開始点に何度も返されなければならないように我慢して。
  8. 録画中断のデジタルビデオ映像と作物の約10〜15分であり、デジタルビデオ編集ソフトウェアを使用して、すべての不要な映像の取得後を削除します。

3イメージング大人ショウジョウバエ

  1. 使い捨て1.5ミリリットル分光ポリスチレンキュベット中で、単一の大人のショウジョウバエを置きます。
    注:大人のショウジョウバエのCO 2 anaesthetization直ちにbehav前にioral分析プロトコルは、結果が12を危うくする可能性がある。大人のショウジョウバエは、行動試験13で実行する前に、CO 2 anaesthetizationから回復するために、24時間の期間が与えられることをお勧めします。
  2. 小さなコットンボールとキュベットの端を差し込みます。コットンボールは、大きなキャップスペースを占有するのに十分タイトなパックされていることを確認し、キュベットの減少容積区画にフライを閉じ込める。
  3. 実体顕微鏡の白い舞台板にキュベットを置き、適切にデジタルカメラの液晶モニターで観察視野を持つキュベットの減少容積区画を合わせます。
  4. 光ファイバー照明システムからの光を上方からキュベットを照射する。最適な照明を提供するために入射光の角度を調整する。
  5. 顕微鏡の焦点を、デジタルビデオの収集を開始。
  6. 録画中断のデジタルビデオ映像と作物の約30〜45分であり、すべての不要なを削除デジタルビデオ編集ソフトウェアを使用してフッテージ取得後。

結果

私たちは、 スタスミン遺伝子2)14の機能の喪失に関連した幼虫の行動表現型を獲得し、定量化するためにこの技術を正常に使用しています。 スタスミン遺伝子は、可溶性チューブリンのプールからチューブリン二量体を分割し、微小管を結合し、その分解促進する微小管15,16調節タンパク質をコードしている。スタスミン機能が末?...

ディスカッション

神経系の機能を研究するためのモデル系としてキイロショウジョウバエの強みは主に利用可能な強力な遺伝子ツールの収束と開発された堅牢な行動アッセイ幅広い由来する。ここでは、 ショウジョウバエの成体および横方向の視点から幼虫機関車の表現型の高品質のデジタルビデオを取得するためのシンプルな、そして幅広いアクセスができる顕微鏡技術を提示する。私たちは...

開示事項

著者らは競合する利益が存在しないことを宣言した。

謝辞

著者らは、ビデオのナレーションを提供するための技術支援やサポート、ジェームズ·バートンのためのアレクサンドラオピーを承認したい、付属のビデオに登場するためのラモナFlatzとJoellenスウィーニー。この作品は、MJマードック公益信託(JEDに認可番号2012205)によってサポートされていました。

資料

NameCompanyCatalog NumberComments
Trinocular Stereozoom MicroscopeOlympus CorporationSZ6145TR½ C-mount was removed and replaced with 1X C-mount
1X C-mountLeeds Precision InstrumentsLSZ-1XCMT2
Digital Camera Coupler (43 mm thread)Qioptiq Imaging Solutions25-70-10-02
58 mm to 48 mm Step Down RingB&H VideoGBSDR5848
48 mm to 43 mm Step Down RingB&H VideoGBSDR4843
Lensmate Adapter Kit for Canon G10LensMateOnline.com
Canon PowerShot G10 Digital CameraCanon U.S.A., Inc.
1.5 ml Spectroscopic Polysterene CuvetteDenville ScientificU8650-4

参考文献

  1. Zhang, B., Freeman, M. R., Waddell, S. . Drosophila neurobiology: a laboratory manual. , (2010).
  2. Frank, C. A., et al. New approaches for studying synaptic development, function, and plasticity using Drosophila as a model system. J Neurosci. 33, 17560-17568 (2013).
  3. Mudher, A., Newman, T. . Drosophila : a toolbox for the study of neurodegenerative disease. , (2008).
  4. Bilen, J., Bonini, N. M. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet. 39, 153-171 (2005).
  5. Jakubowski, B. R., Longoria, R. A., Shubeita, G. T. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes. Fly (Austin). 6, 303-308 (2012).
  6. Caldwell, J. C., Miller, M. M., Wing, S., Soll, D. R., Eberl, D. F. Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants). Proc Natl Acad Sci U S A. 100, 16053-16058 (2003).
  7. Jahn, T. R., et al. Detection of early locomotor abnormalities in a Drosophila model of Alzheimer's disease. J Neurosci Methods. 197, 186-189 (2011).
  8. Donelson, N. C., et al. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the "tracker" program. PLoS ONE. 7, e37250 (2012).
  9. Slawson, J. B., Kim, E. Z., Griffith, L. C. High-resolution video tracking of locomotion in adult Drosophila melanogaster. J Vis Exp. (24), (2009).
  10. Colomb, J., Reiter, L., Blaszkiewicz, J., Wessnitzer, J., Brembs, B. Open source tracking and analysis of adult Drosophila locomotion in Buridan's paradigm with and without visual targets. PLoS ONE. 7, e42247 (2012).
  11. Demerec, M. . Biology of Drosophila. , (1965).
  12. Barron, A. B. Anaesthetising Drosophila for behavioural studies. J Insect Physiol. 46, 439-442 (2000).
  13. Greenspan, R. J. . Fly pushing : the theory and practice of Drosophila genetics.. , (2004).
  14. Duncan, J. E., Lytle, N. K., Zuniga, A., Goldstein, L. S. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila. 8, e683244 (2013).
  15. Belmont, L. D., Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell. 84, 623-631 (1996).
  16. Cassimeris, L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol. 14, 18-24 (2002).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

92

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved