JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、繊維のグラデーション組織とのエレクトロスピンナノファイバー足場を作製し、細胞形態/方向を調節することでアプリケーションを探求するプロトコルを提示する。ナノファイバー足場の物理的および化学的性質に関して勾配が生物医学分野での幅広い用途を提供する。

要約

The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion.

概要

ナノファイバーは、その構造および相対的な大きさ1で、細胞外マトリックスを模倣する能力の組織工学のための人気のユーティリティである。しかし、このような腱から骨挿入部位のようないくつかの天然の組織界面は、腱に向かって整列して増加し、骨部位2-5で減少する可変の組織構造を示すコラーゲン線維を含む。そこで、効果的な組織再生のための効果的な構造勾配を模倣し得る足場を作製する必要がある。

以前は、具体的には、ミネラル含有量6ファイバー組成が徐々に変化に行われた研究があった。しかし、結合組織の構造成分を再現することは、主に未踏のまま。以前の研究は、ラット頭蓋冠骨芽細胞の増殖に対する表面のシリカ粒子密度の効果を研究することによって、形態学的勾配を調べ、インバーを発見シリカ粒子密度及び細胞増殖7とそれの関係。しかし、以前の研究では、細胞増殖を媒介する形態学的変化は、繊維組織変更7,8を模倣で能力を欠いている粗さを表面主に関連していた。最近の研究では、9をエレクトロスピニングするための新規なコレクタを使用して、ユニークなコラーゲン繊維の配向を模倣する足場を作製することを試みた。この研究は、両方の整列とランダム繊維と足場を生産することに成功したが、それはネイティブの組織に展示漸進的な変化を模倣することができなかった。また、ランダムな向きに整列からの即時変更で、個別のコ....

Access restricted. Please log in or start a trial to view this content.

プロトコル

ソリューションの調製

  1. 100 mg / mlのおおよその濃度で、ポリ(εカプロラクトン)(PCL)(W M =8万グラム/モル)の溶液を調製する。 4の比率でのジクロロメタン(DCM)およびN、N-dimethlyformamide(DMF)の混合物中でPCLを溶解:1(v / v)の10%の濃度(w / v)の。
  2. 混合を20 mlのガラスチューブ中の溶液を置き。 30分間超音波洗浄器にガラス管を置き、または溶液は半透明になるまで。

2.装置の準備

  1. 付属の21ゲージ鈍針で5ミリリットル注射器に準備されたPCL溶液を加える。
  2. 図1によれば、垂直電界紡糸位置にシリンジポンプを配置する。
  3. 2cmのX整列繊維基材のための5cmのオープンスペースでステンレス鋼ギャップコレクタを使用してください。針の先端からコレクター12センチメートルを置きます。
  4. 直流(DC)に高電圧電源を接続し針とコレクタを接地してください。コレクタが個別に他のラボ機器に非接触で接地されていることを確認してください。

3.エレクトロ

  1. 取り外したときに、針の先端に形成滴まで1.50ミリリットル/時間に設定したシリンジポンプは、直ちに交換されている。その....

Access restricted. Please log in or start a trial to view this content.

結果

このプロトコルを使用して、組織的な勾配を有する繊維マットを形成した。 図3は、ナノファイバー足場上の様々な位置で撮影したSEM像を示す。定性的には、これは6mmで( 図3D)でのランダム繊維品揃え0ミリメートル( 図3A)で一軸整列した繊維からの進行があると判断することができる。 FFTは繊維配列に定量値を与え、定量的なプロセスに関する詳細.......

Access restricted. Please log in or start a trial to view this content.

ディスカッション

The most critical part of the protocol is generation of the gradient scaffold. It is imperative that the mask covering the collector moves at a constant velocity so there is a gradual change within the fiber scaffold. The correct preparation of PCL solution is also important to ensure electrospinning success. Checking the fiber morphology prior to electrospinning is recommendable, especially after the encapsulation of Coumarin-6, which may require a higher voltage to electrospin correctly.

Fu.......

Access restricted. Please log in or start a trial to view this content.

開示事項

The authors have nothing to disclose.

謝辞

この作品は、ネブラスカ大学医療センターと国立衛生研究所(助成金番号1R15 AR063901-01)からスタートアップ資金から部分的にサポートされていました。

....

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
PolycaprolactoneSigma-Aldrich440744
N,N-DimethlyformamideFisher ChemicalD-119-1
DichloromethaneFisher ChemicalAC61093-1000
Coumarin 6Sigma-Aldrich546283
Adipose Derived Stem CellsCellular engineering TechnologiesHMSC.AD-100
Fetal Bovine SerumLife Technologies26140-111
Fluorescein DiacetateSigma-AldrichF7378
EthanolSigma-AldrichE7023
Trypsin-EDTAInvitrogen25300-054
α-Modified Eagle's MediumInvitrogena10490-01
AcetoneFisher Scientifics25120a
Phosphate Buffered SalineInvitrogen10010023
Glass SlidesVWR international, LLC101412-842
Syringe PumpFisher Scientific14-831-200Single syringe
Ultrasonic CleanerBranson1510
High Voltage DC Power SupplyGamma High Voltage ResearchES30
Scanning Electron MicroscopeFEINova 2300
Fluorescence MicroscopeZeissAxio Imager 2

参考文献

  1. Xie, J., Li, X., Xia, Y. Putting electrospun nanofibers to work for biomedical research. Macromol. Rapid Commun. 29 (22), 1775-1792 (2008).
  2. Genin, G. M., et al. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J<....

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

98

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved