JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

This protocol describes repetitive hypoxic preconditioning, or brief exposures to systemic hypoxia that reduce infarct volumes and blood-brain barrier disruption following transient middle cerebral artery occlusion in mice. It also details dual quantification of infarct volume and blood-brain barrier disruption after stroke to assess the efficacy of neurovascular protection.

要約

脳卒中の実験動物モデルは、ストロークの病態を理解し、より効果的な治療戦略を開発するための貴重なツールです。反復的な低酸素プレコンディショニング(RHP)2週間のプロトコルは、焦点虚血性脳卒中のマウスモデルにおいて、中枢神経系(CNS)損傷に対する長期保護を誘導します。 RHPは期間(2または4時間)と強度(8%と11%のO 2)の両方に変化する低酸素症に9確率的エクスポージャーで構成されています。 RHPは、内因性CNS-保護表現型の長期的な誘導を示唆し、梗塞体積、血液脳関門(BBB)の破壊、および低酸素への最後の暴露後の数週間のための脳卒中後の炎症反応を減少させます。梗塞体積及びBBB破壊の二重定量化のための方法は、RHPまたは他の推定上の神経保護剤を有するマウスにおける神経血管保護を評価するのに有効です。成人男性のスイスウェブスターマウスを21%OにRHPまたは期間と同等の曝露によって予め調整しました。 すなわち、室内空気)。 60分一過中大脳動脈閉塞(tMCAo)は、最後の低酸素曝露後の2週間誘導しました。閉塞および再灌流の両方が経頭蓋レーザドップラー流量測定によって確認しました。再灌流後の二十二時間、エバンスブルー(EB)を尾静脈注射を介して投与しました。 2時間後、動物をイソフルランの過剰投与、脳切片を2,3,5-塩化トリフェニルテトラゾリウム(TTC)で染色したことにより屠殺しました。梗塞容積を定量しました。次に、EBをtMCAo後にBBB破壊を決定するために、48時間かけて組織から抽出しました。要約すると、RHPは他のCNSベースおよびプロ炎症性全身疾患状態のための翻訳可能性のある、マウスにおける脳卒中損傷から長期内因性神経血管保護を誘導するために、最小限のコストで、複製することができる単純なプロトコルです。

概要

成人障害と死因の第4位の主要な原因としては、脳卒中は、米国の成人人口が直面する最も衰弱性疾患状態の一つである。脳卒中の1動物モデルは、虚血性傷害を軽減する新しい方法の実験的調査を可能にし、脳卒中後の回復を改善します。そのようなトランスレーショナルリサーチのための新規な一道がプリコンディショニングされます。前処理は、その後、より重度の傷害からの損傷を低減するために、非損傷刺激の意図的な使用である。2低酸素プレコンディショニングは、 インビボおよびインビトロ試験の両方において脳卒中に対する保護を提供する脳内の多面的な変化をもたらすことが示されています。低比重低酸素しかし、低酸素に一回の露光のみ成体マウスにおける虚血に対する耐性未満の72時間の誘導、短期的な神経保護を提供しています3。でも14時間毎日のエクスポージャーの4週間後の4、Linら。 FOウントその神経保護は、一週間持続した。5繰り返し低酸素プレコンディショニング(RHP)頻度、期間、および低酸素曝露の強度の確率的変動によって特徴付けられます。単一プレコンディショニング課題とは対照的に、RHPはマウスで8週間まで持続脳保護表現型を誘導する。6 RHP、最終低酸素暴露後週間梗塞体積、血液脳関門(BBB)破壊、血管炎症、および白血球漏出を減少。 RHPは、具体的には、虚血性半球におけるB細胞集団を維持しながら、T細胞、単球、およびマクロファージ集団を減少させることにより、虚血性脳の炎症を減少させた。 図7は、実際には、RHPは、脳卒中を含む、任意のCNS ​​傷害の前に、マウスにおける免疫表現型を誘導しました。 RHP処理された健康なマウスから単離したRHP処理されたB細胞は、抗原提示および抗体産生の両方のダウンレギュレーションと、ユニークな抗炎症性の表現型を示しました。ザ炎症誘発性適応免疫機構の全体的な減少だけでなく、中枢神経系に特異的な炎症性疾患のための内因性の免疫抑制を誘導するためにRHPに優れた方法論になりますが、また前炎症性病変を含む全身損傷または疾患モデル。

RHPは一過性の中大脳動脈閉塞(tMCAo)以下の梗塞体積およびBBB破壊の両方を低減します。このような一般的に使用されるtMCAoとして脳卒中の動物モデルは、劇的に脳卒中の病態生理の理解だけでなく、より効果的な神経治療薬の設計を改善します。まず、小泉によって開発された1986年に、8 tMCAo手順は、広く使用されているげっ歯類において脳卒中を誘導する方法と、再灌流後の炎症を調査するための好ましい方法の一つです。 tMCAoための方法が進化するにつれて、シリコーンコートフィラメントのより最近の使用は、他のモデル9,10 <と比較して、くも膜下出血の危険性を減らします/ SUP>残念ながらtMCAoは、多くの場合、梗塞量に大きなばらつきを生成してもして、信頼性を向上させる。11-13これらの研究のほとんどは、2,3,5-トリフェニルクロリド(TTC)で染色することによって冠状脳切片における梗塞領域の輪郭を描く、考え梗塞定量化のためのゴールドスタンダードは、鮮やかな、複製可能な結果を​​生成するための簡単​​で安価な方法であるためです。 TTCは、ミトコンドリア内に存在する脱水素酵素の基質として機能します。脳切片をTTC溶液にさらされると、ホルマザン、非水溶性の還元生成物は、生存可能なミトコンドリアの深い赤色の沈殿ところ、TTCを選択的に生細胞内に取り込まれます。そのため、虚血組織におけるミトコンドリア機能障害のため、この組織が ​​損傷を受け、健康な組織の分化を可能にする、白のまま。14

RHPはまた、虚血性半球におけるBBB破壊を減少させる。6したがって、同じB内のBBBの整合性の二重の定量化をTTCベース梗塞ボリュームと雨は、内因性の保護の完全な有効性に関する有用な情報、および未処理と処理された動物におけるBBB破壊および梗塞の間の潜在的な因果関係を提供する15の測定します。脳卒中の二次破砕BBBを介して末梢血の流入は、最終的には虚血性脳卒中の患者における感染と死亡率を増加させ、虚血性半球で白血球集団、炎症性サイトカイン、酸化ストレス、血管原性浮腫、出血性転換を増加させます。16,17動物モデルにおいてBBB破壊を測定する一般的な方法は、脳へのエバンスブルー(EB)色素漏出の定量化によるものである。15,18-21 EBを選択的にアルブミン、球状タンパク質を血清に結合する(MW = 65kDaの)それは無傷の動物でBBBを通過していません。22虚血性脳卒中後、EBは、脳に浸透し、光学濃度withiの測定を可能にする、620 nmで蛍光を発しますnは灌流が実質を負傷。22光学密度はEBは経心臓灌流によって死後皮質血管系から洗い流されたBBBの透過性に正比例します。 EBを投与した動物におけるTTC染色脳の即時処理により、梗塞容積及びBBB破壊の両方を効果的に定量することができます。これは、神経損傷およびBBBの破壊は、脳卒中後の脳の同時処理ではないことに留意すべきである、23,24ので屠殺時の選択は重要な考慮事項です。

詳細RHP方法、そのモデルヒト患者において、中大脳動脈閉塞、神経および血管脳卒中損傷エンドポイントを決定するための二重の組織学的方法を、一時的な動脈閉塞を誘導するためのtMCAo方法を以下のプロトコル。 TTCは、全体の梗塞体積の定量化を可能にする、細胞死および累積的組織損傷を測定します梅、EBはBBB損傷の半球定量化を提供します。

Access restricted. Please log in or start a trial to view this content.

プロトコル

注:このプロトコルは、実験動物の使用のための健康のための国立研究所(NIH)のポリシーを遵守していUTサウスウェスタン医療センターの施設内動物管理使用委員会(IACUC)によって承認されました。

1.繰り返し低酸素プレコンディショニング

  1. カスタム設計4ガスレギュレータの流量計と酸素(O 2)タンクからの圧縮ガスが入口ポートを介してチャンバに流れるように塩ビ管を標準15 L誘導室に取り付けます。カスタム設計の詳細のための装置および材料を参照してください。
  2. 8%と11%O 2への曝露を受ける繰り返し低酸素プレコンディショニング(RHP)グループ、および制御グループ、同時に21%O 2(室内空気)に暴露を受ける:2群にマウスを分けます。 RHPエクスポージャーの周波数の変化を表1に、強度(8と11%O 2、21%のO 2)、および期間(2または4時間)を参照してください。
  3. 食料と水のボトルをそのままにして、それぞれのO 2のタンクに接続されたチャンバ内に、各ケージの上部フィルターのふたを外し、ケージを配置します。閉じて、チャンバの蓋を固定します。
    1. タンクのメインガスバルブを開き、露出の最初の5分間毎分2リットル(LPM)にそれぞれ導入室のための最初の流れを設定します。露出の残りの1 LPMに流量を減らします。
    2. 露光の終了時に、0にLPMに流れを減少させ、タンクのガス弁を閉じます。
    3. チャンバーの蓋を開き、各ケージにフィルタ上部蓋を交換してください。次の低酸素暴露されるまで、標準的なハウジング内にケージを置きます。
  4. 使用後NPD(ステリス)で各導入室または同等の消毒剤/脱臭剤を下にスプレーしてください。
  5. 表1に記載したように2週間にわたって一日の同じ時間に21%とRHPマウスの両方を公開。

2.過渡中大脳動脈閉塞(tMCAo)

  1. 最終RHP曝露後の行程のタイミングの詳細についての説明を参照してください。
  2. 無菌手術の職場を準備します。 70%エタノールまたは同等の消毒剤で周囲の職場をきれいにし、すべての手術器具をオートクレーブ。
    1. 脳血流(CBF)の相対的変化を測定するレーザードップラー流速計(LDF)装置を設定します。 37℃に加熱パッドをオンにします。 34°Cまでのインキュベーターをオンにします。
  3. 小さ ​​な誘導室の4%イソフルラン/ 70% NO 2/30%O 2のミックスに短時間曝露でマウスを麻酔。軽く足をつまんで、適切な麻酔を確認してください。マウスが足を取り下げた場合、誘導室にマウスを返し、イソフルラン暴露を続けます。
  4. 麻酔導入室からマウスを削除し、すぐにノーズコーンにマウスの鼻を挿入します。 anesの流れを閉鎖、ノーズコーンへのガスの流れを開きthesia導入室。
    1. 70% NO 2/30%O 2混合ガスを変更することなく、手順の残りの維持量として1.8%でイソフルランを修正。呼吸が遅く、手順全体を通して定期的に残っているが、呼吸が迅速かつ浅くなると、イソフルラン投与量を増やす必要があります。維持量は、実験に使用される装置の製造と動物の間で変化してもよいです。
  5. microshaverを使用し、目や耳のコーナーだけでなく、首の腹側正中線との間の時間的な領域の上に髪を剃ります。過剰な毛皮を削除し、手順の間に乾燥から角膜を維持するために滅菌綿棒で眼潤滑剤を塗布。無菌状態を維持するために滅菌綿棒でアルコールパッド及び綿棒 - イオジンで切開領域を拭います。
  6. げっ歯類の外科ガイドラインに従って鎮痛薬を投与します。
  7. 目と耳の間の時間的皮膚を通して切開を行います。頭筋を公開します。外科用マイクロはさみを使用して、白筋縞の領域内の時間的な尾根で頭筋の靭帯を切りました。
    1. そっと頭蓋骨を介して中大脳動脈(MCA)を可視化するために鉗子で横方向に筋肉量を押してください。頭筋の切開した後、面積が血液で充填することができます。静か任意の潜在的な出血を忠実なために綿棒を使用しています。
    2. MCA領域にLDFプローブ先端をターゲットにしています。この領域はマウスとの間で変化するように選択された容器を記録します。
    3. 代わりに、LDFを保持し、頭蓋骨と同一平面上に安定した赤血球フラックスが読み込まれるまで、ベースラインのCBFとしてこの値を記録します。レーザードップラー流量計の理想的なベースラインCBFは> 600フラックスであるが、これは、メーカーによって異なります。ベースラインCBFが<400フラックスは、フロー記録は、近くの静脈、または標的血管上のプローブの不完全な配置から最も可能性が高いです。
  8. ベースラインCBFが確立された後、repositiマウスの首部が露出されるようになっています。その頭をサポートし、ノーズコーンから着実に麻酔下でマウスを保持します。
  9. 鎖骨のすぐ下顎下から腹側正中切開を行います。
    1. 鉗子を使用して、左総頚動脈(CCA)を露出するために、すべての表在筋膜を切開鈍。結合組織および迷走神経からCCAを分離します。
    2. 永久に6.0絹縫合糸でCCAを結紮。フィラメントの配置を閉塞するための十分なスペースを確保するために可能な限り近位として結紮縫合糸を配置します。
    3. ループとゆるく閉塞縫合糸にCCAの先端の周りに第シルク6.0縫合糸を結びます。閉塞フィラメントは、その後頸動脈に通されるように動脈を閉塞しないように注意してください。
    4. ゆるく結んだシルク縫合糸にCCAの先端をクランプするために8×2mmの光マイクロserrafine areterialクランプを使用してください。優しく鉗子でCCAを持ち上げて、結紮縫合糸などに近接したように、小さな縦切開を作ります3mmのvannasで可能。
    5. 動脈内腔を入力するように切開を通って12ミリメートルのシリコンコーティング6.0ゲージナイロン閉塞フィラメントを通し、次に数mm進めます。ゆるくCCAからフィラメントを押して、動脈クランプを削除しません血流を確保するために、閉塞フィラメントの先端の周りに第緩い絹縫​​合糸を締めます。
    6. 内頸動脈へのCCA(ICA)と外頚動脈(ECA)の最初の分岐部に、9 10.5ミリ過去にICA.Advanceに閉塞フィラメントを入力するために、第1分岐部の右枝に閉塞フィラメントスレッド左内頸動脈(ICA)に第絹縫合糸。
    7. まもなくICAを入力した後、ICAとpterogopalantine動脈(PPA)との間の第2の分岐部に左の枝に閉塞フィラメントを進めます。 PPAの可視化では、閉塞フィラメントの完全な配置を伴う軽度の抵抗を感じるまで、そのように進みそうです。鉗子でICAを持ち上げると、フィラメントは第二birfurcationの左ブランチに、より容易にスレッド化に役立つことがあります。第絹縫合糸を締めます。
    8. MCA上の​​切開が表示されるように、マウスの電源を入れます。 LDF機器と、CBFはLDFの読み取りを介してブロックされていることを確認します。成功した閉塞は、ベースラインCBFから> 80%の減少です。
    9. 適切な位置が達成されたときに完全に閉塞フィラメントの周囲の第絹縫合糸を締め、ダブルノット。必要に応じて、わずかに押したり成功閉塞(ベースラインCBFから例えば、> 80%の削減)のためのCBF基準を達成するために、閉塞フィラメントを引き出します。
    10. 6.0ナイロン縫合糸で首と頭の開口部を閉じます。
  10. 閉塞期間中の34℃のインキュベーターにマウスを置きます。閉塞の推奨長さは60分であるが、これは、年齢によって異なり、脳血管解剖学、25、injurの程度のひずみ依存性の違いyは(軽度、中等度、重度)希望します。動物が麻酔から出てくるの分以内意識を取り戻すことを確認します。
  11. ステップ2.3で説明したように、イソフルランで動物を再麻酔、5分間事前に定義された閉塞期間の終了前に、頭皮の切開を開き、MCA灌流がまだ経頭蓋LDF測定値を使用して低減していることを確認。 CBFが十分に( 例えば 、<20%のベースラインCBF)低下していない場合、MCAは、閉塞中のある時点で再灌流したマウスはさらなる実験から除外されるべきです。
  12. 正中頸部切開を開き、緩くCCAの周りの第三絹縫合糸を結ぶ、CCAの分岐部への第2の絹糸が、近位から遠位のは、フィラメントが除去された後、外頚動脈(ECA)が生存し続けることを保証します。
    1. カットまたは閉塞フィラメント( すなわち、第二の絹縫合糸)を保持している結び目をほどくと、ゆっくりと閉塞フィラメントを撤回。削除されると、すぐに閉じてCCAの周囲の第絹縫合糸をICAからの血液の逆流を最小化します。ダブルノットこの縫合糸と6.0ナイロン縫合糸で切開を閉じます。
    2. 再灌流の5分後にCBFのレベルを定量化するために、マウスを再配置します。成功した再灌流は、一般的に閉塞の流れと同様に、研究者は自分の基準を確立することができ、ベースラインCBFの> 50%のCBFとして定義されていますが、されています。動物はそのベースラインの50%未満CBFを示す場合には、MCAが「永久」閉塞であるため、別の研究の除外基準を表す可能性があります。
    3. 6.0ナイロン縫合糸で両方の切開を閉じます。げっ歯類のガイドラインに従って、生理食塩水、麻酔薬(リドカイン)、および抗生物質を提供します。しかし、抗生物質のいくつかの小用量(ミノサイクリンの3ミリグラム/ kg)は、神経保護、次のストロークであることが見出されている。26
  13. 手術後の加熱されたインキュベーター中で意識を取り戻した後、清潔、滅菌ケージにマウスを置きます。湿ったFOOを提供dまたは栄養水分補給栄養ゲルサプリメントや動物のような水のペトリ皿は、脳卒中後の移動度が制限されています。過度の術後疼痛と死の回復中に密接に動物を監視します。

3.エバンスブルー(EB)注射

  1. 再灌流後にEB 22時間を注入し、犠牲とTTC染色の前に2時間血流中を循環する必要があります。
  2. (生理食塩水で2%EB)注射用のEB溶液を作製し、室温で穏やかに混合します。フィルター濾紙を通して溶液または未溶解EBを除去し、室温で保存するために、小さな注射器に取り付けた0.2μmのフィルターに通して押し込みます。
  3. 注射のために必要なEBの量(4ミリリットル/ kg体重)29ゲージ針を0.3 ccのインスリンシリンジに染料の所望の量を描画し、溶液を室温にあることを保証することを準備します
    1. 平底拘束具を用いてマウスを抑えます。横静脈はUPPとなるように尾を持ちermost。横静脈は尾の中心線の両側に配置されています。注射のための安定したマウスを維持するために尾の先端を保持します。
    2. 静脈を穿孔しないように注意して、静脈内に約3.5ミリメートルの針を挿入します。針が注射器に戻って描画し、血液の痕跡を探して、静脈内にあることを確認してください。
    3. 1分間かけ色素のすべてを注入します。溶液は静脈内に起こっている場合は、圧力が注射器に適用されるように、最小の抵抗があるはずです。マウスの尾、手足、そして目に即時の色変化によってEBの成功全身静脈投与することを確認してください。
    4. 尾から針を外し、ゆっくりと出血を止めるために、清潔なガーゼを使用して圧力を加えます。
  4. マウスの皮膚が青色に変わったタイミングを開始します。 EBが弱くBBBを貫通する2時間を循環させています。

4. 2,3,5-トリフェニル塩化(TTC)染色

  1. 灌流およびTTC染色は、再灌流24時間後に発生する必要があります。
  2. 犠牲の指定時刻の前に2%TTC溶液を調製します。 0.01 Mリン酸緩衝生理食塩水(PBS)500mlを、pH7.4にTTC粉末10gを加えます。 TTCの可溶化を促進するために水浴中で37℃に加熱溶液。 注意:TTC粉末、溶液を皮膚、肺、および眼刺激性です。これらの物質を取り扱う際には、適切な個人用保護具を着用します。
    1. 粉末が完全に溶解したら、すぐにボトル、ホイルでカバーし、4℃でのストアに転送します。 TTCとTTCで染色した組織は、光に敏感です。
  3. tMCAo 24時間後およびEB投与後2時間で、小さな誘導チャンバ内のイソフルラン過剰摂取で動物を生け贄に捧げます。灌流は死後、酸素のない状態で始まる自己分解を最小限にするためにsacriciceを直後に開始する必要があります。
  4. すぐに動物を確保足を介して、ピン前腕と発泡スチロールのプラットフォーム上で。ただ胸郭の下に正中線から腹壁を通して横切開をカットします。慎重に心臓を露出するように、振動板を切断。
    1. 27ゲージ翼状注入針に冷0.01 M PBS氷で満たされ、接続された60 ccのシリンジで5ml /分の流量で灌流ポンプを起動します。約0.5cm、心臓の左心室に針の先端を配置し、右心房をカット。静脈血が無色に表示されるまで、漸進的に希釈された静脈血は、灌流中に心房から流出する必要があります。経心臓に30ミリリットルの0.01Mリン酸緩衝生理食塩水(PBS)を灌流します。
  5. 透明20シンチレーション瓶にTTC溶液5mlを追加します。
  6. すぐ灌流後、動物を刎ねる、必要に応じて、小さなハサミやスパチュラを用いて脳を解剖します。くも膜下hemorrhaを受けた動物を除外するために、脳を調べ縫合糸配置に二ウィリス輪でGE、。閉塞したMCAに半球反対が顕著EB漏れや浮腫なし、淡い表示されていることを確認してください。
  7. マウス脳の厚さ1.0mmの冠状切片を作製するために設計されたアクリル脳マトリックスにPBSを注ぎます。マトリックス中に、脳、背側を上に置き、すぐに脳の上にPBSを注ぎます。湿った脳を保ちます。
    1. 行列の吻側側から2番目のスロットにステンレス鋼0.21ミリメートルの厚さのブレードを挿入することにより、嗅球を削除します。
    2. 行列の尾側から4番目のスロットにブレードを挿入することにより、小脳を削除します。
    3. マトリックス中の残りのスロットの中央スロットにブレードを挿入します。均等にスライス中に組織の最も均一な分布を確実にするために、残りの組織を二分する、残りのブレードを挿入します。
    4. すべてのブレードが挿入されたら、それを湿らせる脳にPBSの1〜2滴を追加します。
    5. ブレードを取り外し吻側の領域で始まる行列から一度に1つのS。 tMCAo後にTTC分析のための最初の7スライスにしてください。慎重にTTC-充填バイアルにブレードからスライスを転送するために、小さなヘラを使用してください。
  8. すべてのセクションでは、バイアルにされた後のセクションでは、ピンクを回すまで、温水浴中でそれと場所をキャップ。不均一な染色につながる部分の重複を避けるために必要に応じてゆっくりお風呂にボトルを回します。そしてTTC処分及びT​​TC化学反応を終了する脳切片をカバーするためにバイアルに、4%パラホルムアルデヒド溶液を注ぎます。
  9. すぐにきれいな1 "×3"スライドガラス上のセクションを配置し、吻側から尾側にセクションを向けます。
    1. 切片をスライド上に配置されている場合には、標準的なスキャナを使用してスライドをスキャンします。画像解析のための600dpiの最低解像度を設定します。動物の名前とスキャンした画像内のメトリック定規を含めるようにしてください。
    2. スライドの上にフリップすべてのデータが収集されていることを確認するために、裏面をスキャンします。

5.梗塞体積の定量化

  1. 標準的な画像解析ソフトウェア( 例えば、ImageJの)を使用して、梗塞体積を定量化します。
  2. 適切な分析のために、高解像度( たとえば 600 DPI)で画像をスキャンします。クロップ画像。スキャンした画像に含まれるメトリック定規を使用して、すべての画像のスケールを標準化します。
  3. 以下の式を使用して半球の総体積を計算します。同側半球の総体積を計算するための式を繰り返します。
    各スライスのxスライス厚の合計反対半球の合計
  4. 間接梗塞体積を計算します。対照として、健康な、半球を使用して、脳卒中から同側の浮腫のためのコントロール27間接梗塞体積を計算するために、次の式を使用します。:
    対側半球の総容量 -
    (合計volum梗塞の3回の測定の同側半球の電子·平均体積)

6.血液脳関門(BBB)の整合性の定量化

  1. EBの定量化のために準備するために、最初の船の重さ2.5インチ重量を量ります。体重を記録し、各動物のための2つの重ボートレーベル:同側半球用と半球のための1つを。
  2. TTC染色切片をスキャンした後、同側および対側半球に使い捨てかみそりの刃で各セクションを二等分します。計量ボートに全7切片から同側半球を置き、体重を記録します。対側半球のために繰り返します。
  3. すぐに48時間56℃のオーブンセットに重量ボートを転送します。
  4. 乾燥セクションを量ります。別々の1.5mlの微小管に両半球を転送します。
    1. 各半球のために必要とホルムアミドの量(乾燥組織の8ミリリットル/ g)を算出し、それぞれのmicrocentrifugに追加電子管。ホルムアミドは、光感受性であり、これ以降の箔内のすべてのホルムアミドで処理したサンプルをカバーしています。
    2. さらに48時間56℃に設定したインキュベーターにマイクロ遠心チューブを転送します。
  5. 48時間後、標識されたマイクロ遠心チューブの別のセットに青色の上清をピペット。抽出された上清の量を最大にするために、チューブの底に組織を押してください。上清のチューブを保持し、すべての組織の処分。
  6. 標準曲線のためのホルムアミド中でEBの指数連続希釈液を調製します。ホルムアミド中のEBの64 UG / mlのを介して0.125から1ブランク(ホルムアミドのみ)、次いで10指数ソリューションUG / mlのを含みます。
    1. ピペットで96ウェルプレートに標準曲線のために作られた希釈液を300μl。対応するウェルに上清をピペットで300μlの。
    2. 620nmで分光光度計で吸光度を測定します。
    3. 吸光度OでEB希釈の標準曲線を比較上清試料F。光学密度は、BBBの完全性に直接比例します。
    4. 背景として半球の光学密度を想定し、倍の変化を決定するために、式(同側-反対)/反対を使用しています。統計分析について詳しくはMartin らを参照してください。201018

Access restricted. Please log in or start a trial to view this content.

結果

本研究では、10週齢がRHPに無作為化の開始時であった(N = 10)25の雄Swiss Websterマウスまたは21%のO 2(N = 15)のグループが含まれていました。二週間最終RHP曝露後、外科的処置は盲検基により行い、日の間相殺します。 tMCAoに続いて、1マウスは、術後の回復中に死亡し、再灌流CBF基準を満たしていなかったので、1マウスは研究から除外しました。両方除外マウスは、21%O 2群?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

全身低酸素症マウスでの( すなわち、2時間11%O 2の)への単回暴露は「一過性」 -短い持続である低酸素プレコンディショニングの課題へのエピジェネティックな応答を意味tMCAo、29から脳を保護し、ベースラインの表現型は、内に復元され、日。低酸素プレコンディショニング刺激の繰り返しプレゼンテーションは劇的に神経保護表現型の持続時間を延ばす。6

Access restricted. Please log in or start a trial to view this content.

開示事項

The authors have nothing to disclose.

謝辞

Special thanks to the Gidday lab for their work in developing the RHP protocol, as well as the Neuro-Models Facility (UTSW) for their assistance in the tMCAo surgeries. This work was supported by grants from the American Heart Association (AMS), The Haggerty Center for Brain Injury and Repair (UTSW; AMS), and The Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa District of Kiwanis International (JMG).

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Flowmeters, regulatorsVetEquip, IncSpecialty orderFour flowmeters are attached to 6.0 mm flexible PVC tubing which connects to the inlet port on each induction chamber with a plastic female connector. These flowmeters are bolted to a 6.5" x 1" x 1" metal bar. This metal bar is bolted to a MI-246-P pressure gauge with a DISS outlet. This pressure gauge and flowmeter equipment can be attached to each new gas cylinder with a wrench.
21% O2 tankAirGasOX USP200
11% O2 tankAirGasSpecialty order
8% O2 tank AirGasSpecialty order
15 L induction chambersVetEquip941454
Moor Laber Dopper Flow Moor Instruments moorVMS-LDF1-HP0.8 mm diameter probe 
High Intensity Illuminator NikonNI-150
Zoom Stereo Microscope NIkonSMZ800Other surgical microscopes may be used. 
Kent Scientific Right Temperature CODAKent Scientific CorporationDiscontinuedRecommended replacement is PhysioSuite with RightTemp Temperature Monitoring and Homeothermic Control (Kent Scientific, #PS-RT).
Hovabator IncubatorStromberg's2362-EOur model is the 2362N. 2362E is a later model and includes an electronic thermostat. 
V010 Anesthesia system VetEquip901807Includes: ten foot high-pressure oxygen hose, frame, flowmeter, oxygen flush assembly, vaporizer, breathing circuit, chamber, nosecones, waste gas evacuation tubing and two VapoGuard filters
250 ml isoflurane Butler ScheinNDC-11695
D-6 Vet Trim Animal Cordless Trimmer Andis #23905Replacement blades are available from Andis (#23995)
Betadine Fisher Scientific19-898-867 
Q-tipsMultiple sellers Catalog number not available 
Gauze PadsFisher Scientific67622
Surgical drapeFisher ScientificGM300 
Silk Sutures Look/Div Surgical SpecialtiesSP115
Nylon SuturesLook/Div Surgical SpecialtiesSP185
Durmont #5 forceps (2) Fine Science Tools 11251-35Angled 45°
Surgical ScissorsFine Science Tools 14028-10
3 mm VannasKent Scientific CorporationINS600177Straight blade
Hartman Hemostats Fine Scientific Tools13002-10
Occluding filamentsWashington UniversitySpecialty orderFilaments are silicone coated at Washington Univeristy and provided to UTSW facilities for a fee. 
Evans BlueSigma AldritchE2129-10G
Filter Paper Sigma AldritchWHA1001150150 mm, circles, Grade 1 
Weigh BoatsFisher Scientific02-202-1012.5" diameter
0.9% Sodium Chloride Injection USP Baxter Pharmaceutics 2B1321
0.3 cc insulin syringe with 29 gauge needleBecton Dickinson Labware309301
Flat bottom restrainer Braintree Scientific FB M2.0" diameter
TTCSigmaT8877
10x PBS, pH 7.4Fisher ScientificBP399-20
Water BathMultiple sellers Catalog number not available Scintillation tubes with TTC may be manually held under running warm water as an alternative to the water bath.
Styrofoam boardMultiple sellers Catalog number not available 
Large Syringe KitPumpSystems IncP-SYRKIT-LG
Perfusion PumpPumpSystems IncNE-300 
60 cc syringeFisher ScientificNC9203256
27 gauge winged infusion setKawasumi Laboratories, IncD3K1-25G 1
20 ml scintillation vialFisher Scientific50-367-126
Stainless steel spatulaFisher Scientific14-373-25A
Alto acrylic 1.0 mm mouse brain, coronalCellPoint Scientific Catalog number not available 
0.21 mm stainless steel blades, 25 pkCellPoint Scientific Catalog number not available Reusable cryostat blades are an inexpensive alternative.
4% paraformaldehydeSanta Cruz Biotechnology SC-281692
Superfrost microscope slides Fisher Scientific12-550-15
HP Scanjet G4050Multiple sellers Catalog number not available Other commercial scanners are suitable for this step in the protocol.
ImageJ National Institute of HealthCatalog number not available 
Analytical BalanceMettler Toledo XSE 205U
Precision Compact Oven  Thermo Scientific PR305225M
1.7 ml microcentrifuge tubes (Eppendorfs)Denville Scientific C2170
FormamideFisher ScientificBP228-100
96-well platesFisher Scientific07-200-9
Epoch Microplate Spectrophotometer BioTek Catalog number not available 

参考文献

  1. Go, A. S., et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 129 (3), e28-e292 (2014).
  2. Gidday, J. M. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 7 (6), 437-448 (2006).
  3. Stetler, R. A., et al. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol. 114, 58-83 (2014).
  4. Bernaudin, M., et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab. 22 (4), 393-403 (2002).
  5. Lin, A. M., Dung, S. W., Chen, C. F., Chen, W. H., Ho, L. T. Hypoxic preconditioning prevents cortical infarction by transient focal ischemia-reperfusion. Ann N Y Acad Sci. 993, 168-178 (2003).
  6. Stowe, A. M., Altay, T., Freie, A. B., Gidday, J. M. Repetitive hypoxia extends endogenous neurovascular protection for stroke. Ann Neurol. 69 (6), 975-985 (2011).
  7. Monson, N. L., et al. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke. J Neuroinflammation. 11, 22(2014).
  8. Koizumi, J. Y. Y., Nakazawa, T., Ooneda, G. Experimental studies of ischemic brain edema, I: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 8, 1-8 (1986).
  9. Liu, F., McCullough, L. D. The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol. 1135, 81-93 (2014).
  10. Rousselet, E., Kriz, J., Seidah, N. G. Mouse model of intraluminal MCAO: cerebral infarct evaluation by cresyl violet staining. J Vis Exp. (69), (2012).
  11. Lin, X., et al. Surgery-related thrombosis critically affects the brain infarct volume in mice following transient middle cerebral artery occlusion. PLoS One. 8 (9), e75561(2013).
  12. Yuan, F., et al. Optimizing suture middle cerebral artery occlusion model in C57BL/6 mice circumvents posterior communicating artery dysplasia. J Neurotrauma. 29 (7), 1499-1505 (2012).
  13. Kuraoka, M., et al. Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim. 58 (1), 19-29 (2009).
  14. Feng Zhang, J. C. Animal Models of Acute Neurolgoical Injuries II. Springer Protocol Handbooks. Chen, X. X. J., Xu, Z. C., JZ, W. ang , Humana Press. 93-98 (2012).
  15. Ludewig, P., et al. Carcinoembryonic antigen-related cell adhesion molecule 1 inhibits MMP-9-mediated blood-brain-barrier breakdown in a mouse model for ischemic stroke. Circ Res. 113 (8), 1013-1022 (2013).
  16. Sandoval, K. E., Witt, K. A. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 32 (2), 200-219 (2008).
  17. Ballabh, P., Braun, A., Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 16 (1), 1-13 (2004).
  18. Benedek, A., et al. Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res. 1116 (1), 159-165 (2006).
  19. Yasmina Martin, C. A., Maria Jose Piedras, A. K. Evaluation of Evans Blue extravasation as a measure of peripheral inflammation. Protocol Exchange. , (2010).
  20. Belayev, L., Busto, R., Zhao, W., Ginsberg, M. D. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 739 (1-2), 88-96 (1996).
  21. Martin, J. A., Maris, A. S., Ehtesham, M., Singer, R. J. Rat model of blood-brain barrier disruption to allow targeted neurovascular therapeutics. J Vis Exp. (69), e50019(2012).
  22. Kaya, M., Ahishali, B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol. 763, 369-382 (2011).
  23. Chen, Z. L., et al. Neuronal death and blood-brain barrier breakdown after excitotoxic injury are independent processes. J Neurosci. 19 (22), 9813-9820 (1999).
  24. Abulrob, A., Brunette, E., Slinn, J., Baumann, E., Stanimirovic, D. In vivo optical imaging of ischemic blood-brain barrier disruption. Methods Mol Biol. 763, 423-439 (2011).
  25. Majid, A., et al. Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke. 31 (11), 2707-2714 (2000).
  26. Xu, L., et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol. 4, 7(2004).
  27. Goldlust, E. J., Paczynski, R. P., He, Y. Y., Hsu, C. Y., Goldberg, M. P. Automated measurement of infarct size with scanned images of triphenyltetrazolium chloride-stained rat brains. Stroke. 27 (9), 1657-1662 (1996).
  28. Drummond, G. B., Paterson, D. J., McGrath, J. C. ARRIVE: new guidelines for reporting animal research. J Physiol. 588 (Pt 14), 2517(2010).
  29. Miller, B. A., et al. Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia-reperfusion). Neuroreport. 12 (8), 1663-1669 (2001).
  30. Zhu, Y., Zhang, Y., Ojwang, B. A., Brantley, M. A., Gidday, J. M. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning role of HIF-1alpha and heme oxygenase-1. Invest Ophthalmol Vis Sci. 48 (4), 1735-1743 (2007).
  31. Cui, M., et al. Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia. PLoS One. 8 (2), e57065(2013).
  32. Prass, K., et al. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke. 34 (8), 1981-1986 (2003).
  33. Svorc, P., Benacka, R. The effect of hypoxic myocardial preconditioning is highly dependent on the light-dark cycle in Wistar rats. Exp Clin Cardiol. 13 (4), 204-208 (2008).
  34. Chen, S. T., Hsu, C. Y., Hogan, E. L., Maricq, H., Balentine, J. D. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke. 17 (4), 738-743 (1986).
  35. Barone, F. C., Knudsen, D. J., Nelson, A. H., Feuerstein, G. Z., Willette, R. N. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cereb Blood Flow Metab. 13 (4), 683-692 (1993).
  36. Carmichael, S. T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2 (3), 396-409 (2005).
  37. Lesak, M. D., Howieson, D. B., Loring, D. W. Neuropsychological Assessement. , Oxford University Press. 195-197 (2004).
  38. Kapinya, K. J., Prass, K., Dirnagl, U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism. Neuroreport. 13 (11), 1431-1435 (2002).
  39. Engel, O., Kolodziej, S., Dirnagl, U., Prinz, V. Modeling stroke in mice - middle cerebral artery occlusion with the filament model. J Vis Exp. (47), (2011).
  40. Liu, F., Schafer, D. P., McCullough, L. D. T. T. C. fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 179 (1), 1-8 (2009).
  41. Wang, Z., Leng, Y., Tsai, L. K., Leeds, P., Chuang, D. M. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab. 31 (1), 52-57 (2011).
  42. Rosenberg, G. A., Estrada, E. Y., Dencoff, J. E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 29 (10), 2189-2195 (1998).
  43. Goryacheva, A. V., et al. Adaptation to intermittent hypoxia restricts nitric oxide overproduction and prevents beta-amyloid toxicity in rat brain. Nitric Oxide. 23 (4), 289-299 (2010).
  44. Lin, A. M., Chen, C. F., Ho, L. T. Neuroprotective effect of intermittent hypoxia on iron-induced oxidative injury in rat brain. Exp Neurol. 176 (2), 328-335 (2002).
  45. Paul, J., Strickland, S., Melchor, J. P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J Exp Med. 204 (8), 1999-2008 (2007).
  46. Deumens, R., Blokland, A., Prickaerts, J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 175 (2), 303-317 (2002).
  47. Lee, H., Pienaar, I. S. Disruption of the blood-brain barrier in Parkinson's disease: curse or route to a cure. Front Biosci (Landmark Ed. 19, 272-280 (2014).
  48. Jenkins, B. G., et al. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging). J Cereb Blood Flow Metab. 16 (3), 450-461 (1996).
  49. Chen, X., Lan, X., Roche, I., Liu, R., Geiger, J. D. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem. 107 (4), 1147-1157 (2008).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

99

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved