このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
A protocol for the synthesis and processing of polycrystalline SrTiO3 ceramics doped non-uniformly with Pr is presented along with the investigation of their thermoelectric properties.
We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.
酸化物熱電は、電子輸送特性に対する安定性、コストの観点から、高温の熱電アプリケーション向けの有望な候補であることが示されました。 n型酸化物熱電の中で、高度にドープされたチタン酸ストロンチウム(STO)は、その興味深い電子的性質に多くの注目を集めています。しかし、大規模な総熱伝導率(κ〜12 W M -1 K -1 300単結晶のKで)1と低キャリア移動度(μ〜6センチメートル2 V -1秒-1単結晶の300 Kで) 1有害T、電気伝導度σ、ケルビンでの絶対温度を無次元性能指数によって評価される熱電性能、αはゼーベック係数でZT =α2σT/κを、影響し、総熱伝導率をκ。我々は、本明細書の力率などの分子を定義し、PF =α263; T。 (例えば、のSiGe合金など)、他の高温熱電と競合するこの酸化物熱電材料のためには、力率、および/または、格子熱伝導度の低下がより顕著な増加が必要です。
STOの熱電特性を向上させるために実験的研究の大部分は、主に歪み場とフォノンの質量変動散乱を介して熱伝導率の低減に焦点を当てています。これらの試みは、(i)単一またはSrののダブルドーピング2+及び/又はTi 4+サイトを、この方向に対する主な取り組みとして、自然超格子Ruddlesden·ポッパー構造の2,3(ii)の合成さらに、ナノサイズの第二相を添加することによって、絶縁層を介して4のSrO、および(iii)複合エンジニアリング熱伝導率を低減するために5しかし、最近まで、全く強化戦略がsubstantすることが報告されていませんiallyこれらの酸化物熱電力率を増加させます。バルク単及び多結晶STOで報告された最大の力率(PF)の値は、PF <1.0 WのM -1 K -1の上限に限定されています。
合成手法及び処理技術の様々な試みは、上記のアイデアを実現するために使用されてきました。粉末の合成経路は、従来の固相反応を含み、6ゾル-ゲル、7従来の焼結に対し水、8燃焼合成、9、6ホットプレス10と最近放電プラズマ焼結12内に粉末を緻密化するために使用される一般的な技術の一つでありますバルクセラミックス。しかし、同様のドーパント( 例えば、ラ)とドーピング濃度を、得られたバルクセラミックスは、電子および熱輸送特性の範囲を示します。これは、チタン酸ストロンチウム<強くプロセス依存欠陥化学に大でありますサブ>合成依存特性をもたらす3。熱電輸送を利益のために合成及び処理パラメータを最適化レポートのほんの一握りがあります。それが原因で、非常に小さなフォノンにはSrTiO 3でのフリーパス(300 KにおけるリットルpH約 2 nm)を意味していることを言及する価値がある、11ナノ構造は、主に低減によるバルクSTOセラミックスのTE性能の向上のための実行可能な選択肢ではありません格子熱伝導率の。
最近、我々は、非均一のPrをドープしたSrTiOメリットの熱電図では30%以上の改善を同時に強化熱電力率と減少し、熱伝導率に由来する3セラミックを報告した。この詳細なビデオプロトコルでは12,13、我々が提示し、改良された電子的および熱電特性を示すこれらのPrをドープしたSTOセラミックスの製造のための私たちの合成戦略の手順を説明します。
Access restricted. Please log in or start a trial to view this content.
Prをドープしたチタン酸ストロンチウム3粉末の調製
バルク多結晶のPrをドープしたSrTiO 3セラミックスの作製
電子·バルクセラミックスの熱輸送特性の3キャラクタリゼーション
ρ 水は測定温度での水の密度である。14( 例えば、1グラムcm -3の300 Kで等しいです)
Lは、ディスクの厚さであり、t 1/2は、他の複数の最大温度上昇の半分の時間でありますサンプルのIDE。
注:パーカーモデル15は、断熱サンプルと瞬時パルス加熱の理想的な条件を想定し、他のモデルには、熱損失、有限パルス持続時間、不均一なパルス加熱及び不均一などの測定における様々な損失を占めている、長年にわたって提案されています構造。我々は、最も先進的な方法の一つであるパルス補正とコーワンモデル16を使用しています。これは、正面から送信された熱エネルギーの量を最大にし、IR検出器によって観測される信号を最大にするために、試料の表面は高度に放射性でなければならないことに留意すべきです。通常、これは、試料表面にグラファイトの薄いコーティングの適用を必要とします。熱拡散率の測定において2%-5%の不確実性は、ディメンションの決意から生じる、存在している。17
注:原因分析のために使用される方法の感度に、熱容量を決定するために、3回の測定を行います既知C Pに(例えば、サファイアのような)標準物質の比熱の(2)の測定、及び試料の比熱の(3)の測定、(1)ベースライン測定は、バックグラウンドを減算することを含みます。サンプルは、測定るつぼ(この作業で使用したAl 2 O 3るつぼでのPt / Rhのパン)の底部との理想的な接触をするために平坦かつ鏡面研磨されていることを確認してください。サンプルを測定するためのDSCステージの正確な構造、他の人にDSC技術の比較、および正確な指示についての詳細は、様々なソースで見つけることができます。19
/52869/52869eq4.JPG "幅=" 200 "/>
Access restricted. Please log in or start a trial to view this content.
パターンがたSrTiO 3格子上のPrドープの効果を研究するために調製されたままの粉末及びPr-コンテンツ( 図1)の関数として対応するバルクセラミックスのために収集したX線回折、チタン酸ストロンチウム中のPrの溶解度3と二次相(複数可)の形成。パターンは反射が空間群( 図1A)と立方格子にインデックスを付けることができ、すべてのように調?...
Access restricted. Please log in or start a trial to view this content.
このプロトコルでは、改善された成功した電子と熱電特性を示すバルク多結晶のPrドープのSrTiO 3セラミックスを作製するために、合成戦略のステップを提示しています。プロトコルの主なステップは、(i)大気圧下での空気中のドープされたSrTiO 3粉末の固体合成及び(ii)高へのように調製した粉末を緻密化するために、放電プラズマ焼結技術の能力を活用することが含ま?...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors wish to acknowledge the competitive faculty-initiated collaboration (FIC) grant from KAUST.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
SrCO3 Powder, 99.9% | Sigma Aldrich | 472018 | |
TiO2 Nanopowder, 99.5% | Sigma Aldrich | 718467 | |
Pr2O3 Sintered Lumps, 99.9% | Alfa Aesar | 35663 | |
Spark Plasma Sintering | Dr. Sinter Lab | SPS-515S | |
Resistivity/Seebeck Coefficient Measurement System | Ulvac-Riko | ZEM-2 | |
Laser Flash Thermal Diffusivity Measurement System | Netzsch | LFA-457 Microflash | |
Differential Scanning Calorimetry (DSC) System | Netzsch | 404C Pegasus | |
Physical Property Measurement system (PPMS) | Quantum Design | ||
Field Emission Scanning Electron Microscope (FE-SEM) | Hitachi | SU-6600 | |
Energyy-dispersive X-ray Spectroscopy (EDS) | Oxford Instruments | ||
X-ray Diffractometer | Rigaku | Ultima IV | |
Bench-top Sputter Coater | Denton Vacuum | Desk II | |
Diamond Wheel Saw | South Bay Technology |
Access restricted. Please log in or start a trial to view this content.
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved