JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

We present a simple and unbiased olfactory test in mice. With this protocol olfactory discrimination, preference, avoidance and sensitivity to a novel odor as compared to water can be assessed in single behavioral sessions. This method is indicated for a single experimenter and analysis is based on computer-assisted video processing.

要約

嗅覚は、種間で高度に保存されており、再生と生存のために必要とされます。

ヒトでは、嗅覚はまた、加齢に伴って影響を受けている感覚の一つであり、神経変性疾患の強力な予測因子です。したがって、嗅覚試験を早期に神経障害を検出するための非侵襲的診断法として使用されています。嗅覚ネットワーク感受性の根底にあるメカニズムを理解するためには、げっ歯類における嗅覚の研究は、過去10年間で勢いを得ています。

ここでは、事前の食料や水の制限を必要とせずに、マウスにおける先天性匂い知覚と感度の非常にシンプルな、時間効率的かつ再現性の嗅覚検査方法を提示します。試験をマウスに慣れた環境で実行され、香りや匂い物質の曝露の2分のセッションのみを必要とします。解析は、ImageJのにコンピュータ支援コマンドを使用して、 事後に実行されるためであることができます一研究者が最初から最後まで行きました。

このプロトコルは、特別なハードウェアや設定を必要とせず、嗅覚と感度のテストに興味の任意の実験室のために示されています。

概要

嗅覚は、哺乳動物において最も発達し、重要な感覚機能の一つです。嗅覚活性の減損は、最悪のシナリオでも、生存中で、食物摂取、社会的行動に影響を与えてもよいです。ヒトでは、嗅覚の劣化は、年齢依存1であり、神経疾患2の強力な予測因子であると考えられる- 6。ペンシルバニア大学によって開発された嗅覚同定試験は、現在、早期神経学的欠損7を評価し、高い確率で認知症8,9の進行を予測することができるほとんどの、使用される非侵襲的、定量化、診断テストの1つを表します。

嗅覚系のアクセシビリティとげっ歯類における嗅覚の隆起は、嗅覚機能10のメカニズムに対処する研究の強いラインを巻き起こしました。我々は以前のシグナリングRECEPTの機能の喪失を示しましたまたはNotch1のは、嗅覚回避11に影響与えます。このプロトコルでは、嗅覚の性能を研究するために、ニューロンやグリアにおけるシグナリングリガンド、Jagged1を欠損したマウスを使用します。

先天性嗅覚は知覚、匂いと嗅覚感度4の間の識別の3つのパラメータによって定義されています。げっ歯類における嗅覚検査は、様々な方法で行うことができ、いくつかの行動研究は、特定の蒸気濃度で、かつ正確な時間枠12に動物の匂いを提供olfactometersの使用にする- 14。それにもかかわらず、この機器は高価であり、唯一の専門の施設で利用可能です。我々の研究では、揮発性の香りを使用して実施される、簡単、迅速かつ再現性の嗅覚試験プロトコルを提供します。テストは、誘引や忌避臭にメジャー知覚を説明し、香りと水11,15,16との区別を評価します。 wは、同じ設定を使用しますeはまた、異なる濃度16,17で臭いに対する感度を測定することができます。ページや同僚18の仕事に触発され、事後コンピュータ支援ビデオ処理は、実験的な盲検化の必要性と実験全体を実行する一人のために可能にすることなく、公平な結果を提供します。

このプロトコルは、マウスにおいて嗅覚挙動を研究するための出発点を提供することを目的とします。

プロトコル

すべての動物の手順は、科学的な目的のために使用される動物の保護に関するEU指令63分の2010 / EUに従っていると地元の動物管理委員会(フリブール、スイスのカントン)によって承認されています。

1.動物の準備

  1. 実験動物
    1. 生後3-5カ月のオスの成体野生型およびトランスジェニックマウス(C57BL / 6バックグラウンド)で実験を行います。マウスの三つのグループは、野生型同腹子対照(グループA、Jagged1 FLOX / FLOX 19)と2つの条件付きのKOマウス系統(グループB、Jagged1ncKOおよびC、Jagged1gcKO)に対応しています。
    2. 12時間制御明/暗サイクルで換気のよい場所で、標準的な実験室条件下ハウスマウス、食物および水を自由に提供します。

2.実験セットアップ

  1. 実験アリーナ
    1. 実験の舞台のために、きれいな滅菌マウスケージを使用する(35センチ長さ×20.5センチメートル幅X 13.5センチメートル高さ)( 図1A)。
    2. 3センチメートル高い新鮮な寝具、番号付きケージに各マウスを割り当てます。ケージを再利用している場合は、臭気感度試験と同様に、臭気及びマウスの間の交差汚染を避けるために、以下の措置をとります。
      1. 水側をマーク。
      2. 70%エタノール、各側に1つずつを噴霧2ティ​​ッシュペーパーでケージの狭い壁を清掃してください。
      3. マウスの遺伝子型に応じてケージを積み重ね、層ボンネットの下に一時的に保管してください。
  2. カメラ
    1. ケージ( 図1A)の底部から58センチメートルでの目的でカスタマイズされた三脚にカメラをマウントします。三脚とケージの位置を固定し、カメラはケージの上部を中心にすることを可能にするためにマークを区切ります。
    2. ×240ピクセル320ピクセルでの動画撮影、MOVファイルなどの毎秒15.08フレーム。
  3. 臭い
    1. SCENを再懸濁しこれらが可溶性である溶媒中のTS、示されます。
    2. 嗜好テスト用ピーナッツバターのため。ピーナッツ油(w / vの10%)にピーナッツバターを再懸濁します。
    3. 回避試験のための純粋な2-メチル(2-MB)酸(98%)を使用します。
    4. 感受性試験のために、同じマウスのコロニーと背景(C57BL / 6)の女性の尿を使用しています。
      1. 便宜上、嗅覚検査に1〜2日前に尿を収集します。ケージグリッド上記の腹とボンネットの下にマウスを拘束して保持します。ケージグリッドの下に尿の滴を収集するためにプラスチック製のペトリ皿を置きます。
      2. 1.5mlチューブにそれぞれの女性からの尿を収集し、動物間の変動を標準化するために、すべての尿サンプルを混ぜます。使用するまで-20℃で保管してください。
      3. 実験の日に、尿を解凍し、10(1:10、1:100; 1:1,000; 1:10,000)の希釈率で再蒸留水で4希釈を行います。

3.嗅覚テスト

注:このプロトコルでは悪臭が意図的に強く誘引(ピーナッツバターと女性の尿)や強い撥(2-MB酸)として認識されている選択されている15。これは、嗅覚動作との干渉の可能性を排除するために回避試験の前に心地よい匂いに対する嗜好および感度試験を行うことが重要です。それにもかかわらず、簡略化のために、本論文では、嗜好および回避テストは、両方の知覚テストで説明されます。各行動セッションは馴化段階で始まります。

  1. 馴化フェーズ
    1. クリーン割り当てケージに動物を置き、5分( 図1B)のために見ていきましょう。実験ケージの環境はホームケージによく知られているので、この短い時間は慣れのために可能にするのに十分です。
    2. 感受性試験が1日で完了した場合、アプリケーションシートの前に一度だけ馴化を行います最高希釈した臭気のN。感受性試験は、異なる日に行われた場合、それぞれの日に新たなクリーンケージに馴化段階が必要です。
  2. 知覚テスト
    1. 馴化後、カメラをアクティブにし、すぐに底部( 図1C)から約10cmで、ケージの反対側の壁に心地よい香り(ピーナッツバター)60μlのニュートラルな香り(水道水)の60μLをピペット。
    2. マウスが2分( 図1D)のための臭いを調べてみましょう。その後、カメラをオフにします。
    3. この時点で、次のマウスは馴化相から開始に進みます。撥臭(2-MB酸)および水60μlの60μlのを適用することによって、まったく同じ方法で回避テストを実行します。
  3. 感受性試験
    1. 1:次の順序で女性の尿の濃度を増加する雄マウスの吸引しきい値を評価万。 1:1,000; 1:100。 1:10純粋な尿。
    2. 馴化後、以前に3.2.1で説明したように実験者がピペットで移し最高希釈に各マウスを公開します。
    3. ビデオカメラの2分の時間枠内で、水に対する尿の探索行動を記録します。全てのマウスのコホートには最高希釈(1:10,000)について試験した後に上記のように、尿中のより高い濃度にさらします。

4.事後データ分析

注:記載されている全ての行動試験は、データ分析の指示に従って、 事後処理されます。

  1. WindowsシステムのためのImageJでMOVファイルを開きます
    1. http://www.apple.com/quicktime/downloadからカスタマイズされた設定を使用して、Javaのクイックタイムをインストールします。
    2. ImageJのウェブサイト(http://rsb.info.nih.gov/ij/plugins/qt-capture.html)からクイックタイムプラグインをインストールしてください。
    3. ライブラリextensへ:QTJava.zip(プログラムファイルのQuickTime QTSystem C)をインポートImageJのイオン(.ImageJ JRE libに extに)。
    4. プラグインフォルダにもコピーQTJava.zipとはQTJava.jarように名前を変更します。
    5. マクロフォルダ(ImageJのプラグインマクロ)に結合した6スクリプトをインストールします。
    6. オープンImageJのクイックタイムプラグイン、その後近くのImageJをコンパイルして実行します。
    7. クイックタイムを使用して> ImageJのを再度開き、[ファイル]> [インポートを使用してMOVファイルを開きます。
  2. 映像調整
    1. ビデオファイルは、ImageJの中で開かれると、実験者は、ケージ(T0)に臭気物質をピペットで入れた時から定数2分探査を得るためにビデオをカット。 (スタック ToolsSliceリムーバー ImageJのイメージ)1の増分を用いて前のフレームをT0に対応するフレームを特定し、削除します。 2分探査を超えてすべてのフレームを削除するには、同じコマンドを使用します。
    2. ケージが中心とされていることを確認し、必要な使用は、画像>変換場合> [回転]コマンドは、それを配置します。
  3. 見よO処理
    注:ビデオ処理は、完全にコンピュータ支援であり、この紙に伴うマクロコマンドを使用しています。
    1. 127ピクセル×218ピクセルの大きさのケージの上の領域を制限するために、プラグイン>マクロ>実行コマンドからのステップ1マクロを実行します。ケージ( 図2、ステップ1)の上に固定された四角形を移動します。
    2. ステップ2マクロ( 図2、ステップ2)を用いて、関心領域(ROI)にケージの領域をトリミング。
    3. 信号分散を斑点除去し、フィルタリング、閾値信号を割り当てることにより、背景からマウスの画像を抽出するために、ステップ3のマクロを使用してください。 Z軸プロットで出力値は2分探索時の「水室」のROI内の移動、マウスの影の強度に対応する、平均グレー値を示します。スプレッドシートファイル内のROI( 図2、ステップ3)に従って命名ワークシートに結果をコピーします。
    4. ステップ4マクロを使用しますROI「臭気室」でのマウスの平均グレイ値を抽出します。 4.3.3と同じスプレッドシートファイル内のROI( 図2、ステップ4)に従って命名ワークシートに結果をコピーします。
    5. さらにROI「水境界」でのマウスの動きの分析を制限するために、ステップ5のマクロを使用しています。 4.3.3と同じスプレッドシートファイル内のROI( 図2、ステップ5)に従って命名ワークシートに結果をコピーします。
    6. ROI内のマウスの動きの分析を制限するには、「臭気周囲は「ステップ6マクロを使用しています。 4.3.3( 図2、ステップ6)のようにROIのスプレッドシートファイルに従って名前が付けられ、ワークシートに結果をコピーします。
    7. すべてのビデオを処理して、動物あたりのフレーム数の整合性をチェックします。ここでは、2分探査セッションに対応する1,810フレームのすべての動物を記録します。
    8. 各動物について、各ROIのソートフレーム平均グレイVAとフレームの数は、1秒に対応する値で0除算より大きく梅毒および各ROIで過ごした秒を取得します。

5.統計分析

  1. 各試験のためにhttp://www.real-statistics.com/one-way-analysis-of-variance-anova/homogeneity-variances/上で利用可能な式を使用してバートレットの検定により群/遺伝子型内での分散の均一性を確認します。
  2. 時間がバートレットのテストの結果に応じて、同じまたは不等分散を仮定して無指向スチューデントt検定を使用して1つのグループ内の臭気に対する水で過ごした間に引力および回避試験では、比較を行います。ボンフェローニのポストホック検定で一方向ANOVAによって遺伝子型との間に水と一緒に過ごした時間を差し引いた臭いと一緒に過ごした時間を比較します。
  3. 感度テストではウォートと一緒に過ごした時間から減算臭いと一緒に過ごした時間の比較を分析しますボンフェローニの事後テストで一方向ANOVAによる尿の特定の希釈でグループ間のR。ボンフェローニの事後テストと繰り返しで2ウェイANOVAによって成長して臭気濃度にグループ間の感度を比較します。
  4. アトラクションと回避試験における遺伝子型と処置との間の相互作用は、ボンフェローニのポストホック検定を用いて2方向ANOVAによって調査されています。

結果

知覚テストは、2 MBの酸にピーナッツバターと回避に魅力を測定します。マウスを3群に試験され、「臭気境界」に費やされた時間は、水と比較して定量化されます。嗜好試験では、対照群Aは、水(T 8 = 2.52、P <0.05)に比べて臭気への重要な優先度を表示します。一方、グループBは、ピーナッツバターに有意な魅力を示していないと水(T 6 = 3.22、P <0.05)でより多くの時間?...

ディスカッション

匂いの知覚、匂いに対する水と感度対匂いの判別:このプロトコルで提案されたテストは、マウスにおける先天性嗅覚行動のさまざまな側面を評価することを可能にします。このプロトコルは、以前に15を示す嗜好と回避スケールに従って任意の臭いにも適用することができます。プロトコルは探索活動に基づいているので、それはマウスが彼らの動きに影響を与え、嗅覚探査を妨害...

開示事項

There is no conflict of interest.

謝辞

This work is funded by the Swiss National Foundation (31_138429) and Synapsis Foundation for the support of research on Alzheimer’s disease.

資料

NameCompanyCatalog NumberComments
Mouse cageItalplast (Italy)1144B36 cm length x 20.5 cm width x 13.5 cm height
Chipped wood beddingAbedd (Austria)LTE E-0013 cm high
Peanut butterMigros (Switzerland)NA1:10
2-MethylbutyricSigma Aldrich (Switzerland)W269514Pure
Female urine from fertile females of same mouse strainNANADilution series
CameraOlympus (US)Camedia C-8080MOV files
Quicktime for Java (Windows)Apple (USA)NAvideo plugin for visualizing MOV files
ImageJ for WindowsNIH (USA)NAVideo Processing/Analysis

参考文献

  1. Doty, R. L., Kamath, V. The influences of age on olfaction: a review. Cognitive Science. 5, 20 (2014).
  2. Mesholam, R. I., Moberg, P. J., Mahr, R. N., Doty, R. L. Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Archives of Neurology. 55 (1), 84-90 (1998).
  3. Moberg, P. J., et al. Olfactory Dysfunction in Schizophrenia: A Qualitative and Quantitative Review. Neuropsychopharmacology. 21 (3), 325-340 (1999).
  4. Kovács, T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Research Reviews. 3 (2), 215-232 (2004).
  5. Barrios, F. A., et al. Olfaction and neurodegeneration in HD. Neuroreport. 18 (1), 73-76 (2007).
  6. Doty, R. L. Olfaction in Parkinson’s disease and related disorders. Neurobiology of Disease. 46 (3), 527-552 (2012).
  7. Doty, R. L., Shaman, P., Dann, M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiology & Behavior. 32 (3), 489-502 (1984).
  8. Devanand, D. p., et al. Olfactory Deficits in Patients With Mild Cognitive Impairment Predict Alzheimer’s Disease at Follow-Up. American Journal of Psychiatry. 157 (9), 1399-1405 (2000).
  9. Conti, M. Z., et al. Odor Identification Deficit Predicts Clinical Conversion from Mild Cognitive Impairment to Dementia Due to Alzheimer’s Disease. Archives of Clinical Neuropsychology. 28 (5), 391-399 (2013).
  10. Keller, A., Vosshall, L. B. Better Smelling Through Genetics: Mammalian Odor Perception. Current opinion in neurobiology. 18 (4), 364-369 (2008).
  11. Brai, E., et al. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. European Journal of Neuroscience. 40 (10), 3436-3449 (2014).
  12. Larson, J., Hoffman, J. S., Guidotti, A., Costa, E. Olfactory discrimination learning deficit in heterozygous reeler mice. Brain Research. 971 (1), 40-46 (2003).
  13. Alonso, M., et al. Olfactory Discrimination Learning Increases the Survival of Adult-Born Neurons in the Olfactory Bulb. The Journal of Neuroscience. 26 (41), 10508-10513 (2006).
  14. Wesson, D. W., Keller, M., Douhard, Q., Baum, M. J., Bakker, J. Enhanced urinary odor discrimination in female aromatase knockout (ArKO) mice. Hormones and behavior. 49 (5), 580-586 (2006).
  15. Kobayakawa, K., et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature. 450 (7169), 503-508 (2007).
  16. Witt, R. M., Galligan, M. R., Despinoy, J., Segal, R. Olfactory Behavioral Testing in the Adult Mouse. Journal of Visualized Experiments JoVE. (23), (2009).
  17. Lee, A. W., Emsley, J. G., Brown, R. E., Hagg, T. Marked differences in olfactory sensitivity and apparent speed of forebrain neuroblast migration in three inbred strains of mice. Neuroscience. 118 (1), 263-270 (2003).
  18. Page, D. T., et al. Computerized assessment of social approach behavior in mouse. Frontiers in Behavioral Neuroscience. 3, 48 (2009).
  19. Nyfeler, Y., et al. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. Embo J. 24 (19), 3504-3515 (2005).
  20. Tong, M. T., Peace, S. T., Cleland, T. A. Properties and mechanisms of olfactory learning and memory. Frontiers in Behavioral Neuroscience. 8, (2014).
  21. Corthell, J., Stathopoulos, A., Watson, C., Bertram, R., Trombley, P. Olfactory Bulb Monoamine Concentrations Vary with Time of Day. Neuroscience. 247, 234-241 (2013).
  22. Lehmkuhl, A. M., Dirr, E. R., Fleming, S. M. Olfactory assays for mouse models of neurodegenerative disease. Journal of Visualized Experiments: JoVE. (90), e51804 (2014).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

100 2

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved