JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

The human lactoferrin (hLF) is a component of the immune system. In this study, immunofluorescence assays are used to demonstrate both the hepatocellular uptake of hLF and a qualitative reduction in the hepatitis C virus replication upon treatment with hLF.

要約

免疫蛍光は、一般的に生物学の多くの側面を研究するために使用される実験技術です。それは、典型的には、細胞及び組織中の標的分子の分布および/または局在化を可視化するために使用されます。免疫蛍光は、細胞内でのそれらの対応する抗原に対する蛍光標識抗体の特異性に依存しています。直接的および間接的の両方の免疫アプローチは、蛍光色素に結合された抗体の使用に依存しているものを用いることができます。それは、より低い信号を提供し、より高いコスト、より少ない柔軟性を必要とするので、直接免疫蛍光法は、あまり頻繁に使用されます。対照的に、間接免疫蛍光法は、より一般的に、その高い感度を使用し、複数の二次抗体は、それぞれ一次抗体に付着することができるので、増幅された信号を供給する。本稿では、落射蛍光顕微鏡及び共焦点顕微鏡法の双方は、ヒトラクトフェリンの内在化、免疫の重要な構成要素を監視するために使用しました。肝細胞へのシステム。また、我々は、免疫蛍光法を用いて、C型肝炎ウイルスの細胞内複製にHLFの阻害可能性を監視しました。これらのアプローチに関連する利点と欠点の両方が議論されています。

概要

Immunofluorescence is a technique that uses a fluorescence microscope to visualize the distribution and/or localization of a target molecule in a biological sample. Immunofluorescence relies on the specificity of fluorescent-labelled antibodies against their corresponding antigens within a cell1. It is typically used on tissue sections and cultured cell lines in order to analyze the distribution/localization of various biological molecules such as proteins, nucleic acids and glycans. It should be noted that immunofluorescence is often used in combination with other non-antibody methods of fluorescent staining such as the 4',6-diamidino-2-phenylindole (DAPI) stains which are typically used to label DNA2. Moreover, this technique involves fixation of the cells which allows the analysis of cells at a specific time.

Different types of microscopes can be used to analyze immunofluorescence samples. The simplest is the epifluorescence microscope (Figure 1) for which excitation of the fluorochrome and detection of the fluorescence are done through the same light path3. Because most of the excitation light is transmitted through the sample, only reflected excitatory light can reach the objective together with the emitted light. This approach unfortunately leadsto a frequent high signal to noise ratio.In contrast, confocal microscopy (Figure 2) offers a distinct advantage for increasing optical resolution and contrast by means of adding a spatial pinhole placed at the confocal plane of the lens to eliminate out-of-focus light4. This approach allows the reconstruction of three-dimensional structures from the obtained images. However, since an important fraction of the light from the sample is blocked at the pinhole, long exposures are often required.

There are two classes of immunofluorescence techniques, primary (or direct) and secondary (or indirect). Direct immunofluorescence involves a primary antibody linked with a fluorochrome (Figure 3). This method is less frequently used because it provides lower signal, involves higher cost and less flexibility1. Moreover, such antibodies are generally harder to find commercially. On the other hand, the direct attachment of the fluorochrome to the antibody significantly reduces the number of steps in the procedure, saving time and frequently reducing non-specific background signal. This also limits the possibility of antibody cross-reactivty.

Indirect immunofluorescence involves a primary unlabelled antibody which is specific for the epitope of interest1. A secondary antibody which carries the fluorochrome then recognizes the primary antibody and binds to it (Figure 3). Although indirect immunofluorescence is more complex and time consuming than direct immunofluorescence, it is frequently used because of its high sensitivity and it also provides an amplified signal since more than one secondary antibody can attach to each primary antibody. In addition, a vast array of commercial secondary antibodies is available at affordable prices.

Hepatitis C virus (HCV) is a major public-health problem with 130-170 million individuals chronically infected worldwide. In order to halt the epidemic, therapy against HCV will need to be both effective and widely available. Studies focusing on safe and affordable natural product active against HCV have revealed the antiviral activity of the human Lactoferrin (hLF) protein which binds and neutralizes the circulating virion5. In the current study, investigation of hLF activity on the HCV subgenomic replicon system, which is independent from viral entry and shedding, revealed a distinct antireplicative activity of hLF against HCV. This manuscript presents a study in which immunofluorescence assays were performed to monitor the internalization of hLF, an important component of the immune system6, into hepatic cells. Moreover, we monitored the inhibitory potential of hLF on the intracellular replication of the Hepatitis C virus (HCV).

プロトコル

1.細胞の調製および治療

  1. 24ウェルプレートにおいて、ウェルの底部にカバーガラスを置きます。リン酸緩衝生理食塩水(PBS)を各ウェルを洗浄します。
  2. /ウェル5×10 4細胞の密度に各ウェル中のHCVサブゲノムレプリコンを支援するシードのHuh-7細胞。行うには治療法がない場合、細胞は、より高い密度で播種することができます。培地は、ダルベッコ改変イーグル培地、10%ウシ胎児血清(FBS)、2mMのL-グルタミン、1mMピルビン酸ナトリウムおよび250 mg / mlのG-418(レプリコンを維持するため)を補足した(DMEM)です。
  3. 37℃で培養し、5%CO 2翌日、ヒトの乳から精製されたHLFの3μMで細胞を処理します。

2.パラホルムアルデヒド/ショ糖の製造(12%PAFおよび12%ショ糖)

  1. ビーカーに500mlのPBSに入れ、20°Cと30°Cの間に加熱します。 PBS中のショ糖の60グラムを溶解します。 paraformalの60グラムを溶かしPBS /スクロース溶液中のアルデヒド(PAF)。透明な溶液が得られるまでゆっくりと2NのNaOH(3~7 ml)を加えます。
  2. HClでpHを7.4に調整します。 PBSで500ミリリットルに、完全なボリューム。ワットマンのフィルター上の重力によってフィルタします。使用前に、4%PAFおよび4%スクロース(ストレージ1週間に最大4°C)の最終濃度にPBSで溶液を希釈します。

3.免疫蛍光

  1. 所望の時間(0時間、2時間または治療の24時間)で、PBSで2回(1分)細胞を洗浄し、室温で20分間、PBS / 4%PAF / 4%スクロースで固定します。細胞が30-40%コンフルエントであり、典型的には1.5×10 5個の細胞が使用されます。
  2. 20分間、PBS中10%正常ヤギ血清(NGS)中で室温で5分間、PBS中の0.15%のトリトンX-100で細胞を透過性とブロック。
  3. 10%NGS中で目的のタンパク質の一次抗体を希釈する(例:1,000:一次マウス抗HLF抗体の1希釈)。細胞に一次抗体を適用します。
  4. RTまたはOで4時間後/4℃でのNは、10%NGSで5分間、細胞を3回洗浄します。 10%NGS中で希釈した蛍光色素で標識した二次抗体を用いた細胞染色(例:蛍光色素を抗体抗マウス1に連結された488nmでの励起波長で1,000)暗所でRTで1時間。
  5. PBSで5分間、細胞を1回洗浄し、暗所で室温で15分間、4 '、6-ジアミジノ-2-フェニルインドール(DAPI)(1μg/ ml)で細胞を染色します。
  6. PBSで5分間、細胞を2回洗浄します。マウントは、顕微鏡を通して視覚化する前にメディアをマウントSlowFadeのメガネをカバーしています。細胞は今落射蛍光または共焦点顕微鏡による分析のために準備ができています。
  7. 検出の特異性を確保するために、別のコントロールを使用します。例えば、すべての抗体は、自己蛍光を検出するために省略することができます。一次抗体を、二次抗体による非特異的染色を決定するために省略することができます。ない最後に、可能な場合は、コントロール細胞または組織目的の分子を用いることも可能で発現します。
  8. 使用される蛍光標識に適した適切な蛍光顕微鏡(落射蛍光または共焦点)とフィルターセットを使用してサンプルを可視化します。スライドはまた、<-20°Cの場合、後の検査でスライドボックスに保存することができます。

4.蛍光顕微鏡

  1. 光退色を防止するために、暗闇の中でサンプルを保管してください。選択した顕微鏡(落射蛍光または共焦点)の光源をオンにします。
  2. 顕微鏡の電源をオンにします。顕微鏡用カメラの電源をオンにします。可視化のための顕微鏡のスライドを入れてください。対物レンズの開口数を増加させるために、スライド上の液浸油を加えます。
  3. 適切なフィルタを選択します。フォーカスし、適切な目標を調整します。適切な蛍光色素を検出するが光漂白を防ぐためにシャッターを調整します。サンプルを見ているときに、背景光を最小化するためにオーバーヘッドライトをオフにしてください。
  4. 目を変更電子フィルタは、(例えばDAPIおよび488nmでの励起波長のための)様々な蛍光色素を可視化します。カメラで写真を撮ります。

結果

外因的に投与さHLFを内在する肝臓のHuh-7細胞株の能力を、共焦点miscroscopeに免疫蛍光を用いてモニターしました。 HLFは、培養培地に添加し、インターナリゼーションは、その後、細胞外HLFをPBSで洗浄し、結合したHLF残留膜を5分間トリプシン処理(1 ml)で分解し、24時間おきました。細胞は、再播種し、免疫蛍光染色の前に18時間再接着させました。細胞質の限界を概説するために、細胞膜を48...

ディスカッション

HCVの流行は、肝硬変、肝不全や肝細胞癌の危険にそれらを置くこと、新たに感染した患者の80%が慢性感染症を発症して、世界的な脅威のまま。最近2 NS3 N末端プロテアーゼ阻害剤(ボセプレビルおよびテラプレビル)の規制当局の承認によって実証されるようにHCV複製および成熟をターゲットに直接作用型抗ウイルス剤は、プライム抗HCV剤を表します。 HLF抗HCV活性は、現在、ビリオンを循?...

開示事項

The authors declare that they have no competing financial interests.

謝辞

This work was funded by both the Canadian Institutes of Health Research and Natural Sciences and the Engineering Research Council of Canada. M. Bisaillon is a Chercheur Boursier Senior from the Fonds de Recherche en Santé du Québec and also a member of the Centre de Recherche Clinique du Centre Hospitalier Universitaire de Sherbrooke. We thank Dr. Ralf Bartenschlager for the generous gift of the HCV replicon system. We also thank Dr. Charles Rice and Dr. Daniel Lamarre for kindly providing the hepatic cell line. We also want to thank Guillaume Tremblay for technical assistance.

資料

NameCompanyCatalog NumberComments
DMEMWisent319-005-CL
PAFBioShopPAR070.1Flammable solid, skin irritant, lungs and eyes 
PBSWisent311-425-CLWithout Ca2+ & Mg2+
NGSWisent053-150
AlexaFluor 488-labeled anti-mouseInvitrogenA11017
AlexaFluor 568-labeled anti-rabbitInvitrogebA21069
Wheat germ agglutinin Alexa Fluor 488 conjugate (WGA)InvitrogenW11261Potentially mutagenic
Anti-NS5A rabbitAbcamab2594
Anti-hLF mouseAbcamab10110
SlowFadeInvitrogenS36937
Hoechst stainLife Techn.H1399Potentially mutagenic  and carcinogenic
hLFSigmaL0520
Nikon Eclipse visible/epifluorescence MicroscopeNikonTE2000-E
epifluorescence/confocal microscopeOlympusFV1000

参考文献

  1. Odell, I. D., Cook, D. Immunofluorescence techniques. J Invest Derm. 133 (1), e4 (2013).
  2. Portugal, J., Waring, M. J. Assignment of DNA binding sites for 4’,6-diamidine-2-phenylindole and bisbenzimide (Hoechst 33258). A comparative footprinting study. Biochim Biophys Acta. 949 (2), 158-168 (1988).
  3. Lichtman, J. W., Conchello, J. -. A. A. Fluorescence microscopy. Nat Methods. 2 (12), 910-919 (2005).
  4. St Croix, C. M., Shand, S. H., Watkins, S. C. Confocal microscopy: comparisons, applications, and problems. BioTechniques. 39, S2-S5 (2005).
  5. Yi, M., Kaneko, S., Yu, D. Y., Murakami, S. Hepatitis C virus envelope proteins bind lactoferrin. Journal of virology. 71, 5997-6002 (1997).
  6. Wakabayashi, H., Oda, H., Yamauchi, K., Abe, F. Lactoferrin for prevention of common viral infections. J Inf Chem. 20 (11), 666-671 (2014).
  7. Picard-Jean, F., Bouchard, S., Larivée, G., Bisaillon, M. The intracellular inhibition of HCV replication represents a novel mechanism of action by the innate immune Lactoferrin protein. Antiviral research. 111, 13-22 (2014).
  8. Johnson, G. D., Davidson, R. S., McNamee, K. C., Russell, G., Goodwin, D., Holborow, E. J. Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy. J Immunol Methods. 55 (2), 231-242 (1982).
  9. Green Remington, S. J. fluorescent protein: a perspective. Protein Sci. 20 (9), 1509-1519 (2011).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

104 C

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved