このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
このプロトコルの目的は、気孔複合体の細胞皮質内に、GFPタグPATROL1、膜輸送タンパク質のドットを点滅示す可変角度落射蛍光顕微鏡で植物細胞表面上の蛍光標識タンパク質のダイナミクスを監視する方法を示すことですシロイヌナズナ 。
A plant’s cell surface is its interface for perceiving environmental cues; it responds with cell biological changes such as membrane trafficking and cytoskeletal rearrangement. Real-time and high-resolution image analysis of such intracellular events will increase the understanding of plant cell biology at the molecular level. Variable angle epifluorescence microscopy (VAEM) is an emerging technique that provides high-quality, time-lapse images of fluorescently-labeled proteins on the plant cell surface. In this article, practical procedures are described for VAEM specimen preparation, adjustment of the VAEM optical system, movie capturing and image analysis. As an example of VAEM observation, representative results are presented on the dynamics of PATROL1. This is a protein essential for stomatal movement, thought to be involved in proton pump delivery to plasma membranes in the stomatal complex of Arabidopsis thaliana. VAEM real-time observation of guard cells and subsidiary cells in A. thaliana cotyledons showed that fluorescently-tagged PATROL1 appeared as dot-like structures on plasma membranes for several seconds and then disappeared. Kymograph analysis of VAEM movie data determined the time distribution of the presence (termed ‘residence time’) of the dot-like structures. The use of VAEM is discussed in the context of this example.
The plant cell surface, including the plasma membrane and its immediately adjacent cytoplasm, is the main region of a plant cell’s perception and integration of biotic and abiotic cues from the extracellular environment. In response to these cues, cell surface components including plasma membrane proteins and the cortical cytoskeleton undergo dynamic changes, on a time scale of seconds to minutes1-4. Thus, real-time and high-resolution imaging of fluorescent proteins on the cell surface can illuminate a plant’s responses to environmental cues at the molecular level.
Confocal laser scanning microscopy is a powerful tool for determination of fluorescently-tagged protein localization3, however, it is often difficult to monitor the real-time protein dynamics because of its relatively long capturing times. An emerging technique for real-time monitoring of proteins in the plant cell is variable angle epifluorescence microscopy (VAEM), which is an adaptation of equipment usually used for total internal reflection fluorescence (TIRF) microscopy. In TIRF microscopy, the fluorescence-excitation light source is an evanescent light field that is generated when the entry angle of the laser is shallow enough to totally internally reflect light at the glass–water interface. The penetration depth of the evanescent light field is around 100 nm. TIRF microscopy is an outstanding tool for single molecule imaging, such as the detection of exocytosis in animal cells5. However, evanescent light cannot reach plasma membranes or the cortical cytoplasm in plant cells, because they have thick cell walls. Recently, TIRF microscopy equipment has been adapted by plant cell biologists, observing that a laser, if angled slightly more deeply than when being used to induce total internal reflection phenomena, could excite the surface of plant cell samples, resulting in high-quality plant cell imaging6,7. The excitation illumination depth is varied by adjusting the entry angle of the laser; therefore, this technique is described as VAEM. This optical system is also called variable angle TIRF microscopy (VA-TIRFM) because there is a possibility that total reflection may take place at the cell wall-periplasm interface7, however, the term VAEM is used in this article, as per the first report in plants6.
The goal of this protocol is to demonstrate practical procedures for using VAEM to visualize fluorescently-tagged protein dynamics on plant cell surfaces. Additionally, an image analysis protocol to quantify the residence time (duration of presence) of molecules is described for VAEM movie analysis. GFP-PATROL1 dot blinking on stomatal complex cells in Arabidopsis thaliana cotyledons is used as an example. PATROL1 was identified by forward genetic approaches as a causal gene of a stomatal response defect mutant in A. thaliana8. PATROL1 is a plant homolog of MUNC-13, which is a priming factor in synapse vesicle exocytosis8. In response to environmental cues, such as light or humidity, it is thought that PATROL1 reversibly regulates the delivery of a proton pump to plasma membranes in the stomatal complex. Stomatal complexes each comprise a pair of guard cells8 and subsidiary cells9, and they require a proton pump for stomatal movement. In these cells, GFP-tagged PATROL1 localizes to dot-like structures that remain on the plasma membrane for less than 1 min9.
苗の調製
2.スカイドロップ子葉片の取り付け
注:VAEM観察用の試料の調製における重要な要因は、試料とカバーガラスの間に気泡の混入を回避されます。気泡が大きく屈折率の差を生じさせることによってVAEMの画質を低下させます。我々は、「空のドロップ」と呼ばれている単純な実装方法は、気泡を回避するために使用することができA.間のシロイヌナズナ子葉とカバーガラス。これは、観測の直前に行われる必要があります。
3. VAEM観察ムービー取得
倒立顕微鏡はTIRFユニットと1.49の開口数とTIRF対物レンズを搭載しています。注:以下のように本研究で使用するTIRF顕微鏡システム9について説明します 。レーザー入射角のコンピュータ制御は、制御ボックスが使用されます。緑色蛍光タンパク質(GFP)は、488nmの光励起半導体レーザで励起され、そしてt彼は、蛍光が葉緑体の自己蛍光を防ぐために、510から550 nmのバンドパスフィルタを介して検出されます。ファイバ出力電力の測定された最大値は13.0から13.5ミリワットです。検出のために、電子増倍電荷結合素子(EM-CCD)カメラヘッドシステムとCマウントカメラ倍率変更手段が使用されます。
フィジーソフトウェアを使用したGFP標識ドット滞留時間の定量化のための4カイモグラフ分析
このビデオの記事では、Aの GFP-PATROL1のVAEM観測のためのプロトコルシロイヌナズナ子葉気孔複雑な細胞が提供されています。空ドロップ実装はA.のVAEM調製物中の気泡の発生を減らすことができ、簡単な製造方法でありますシロイヌナズナ子葉( 図1)。エントリーレーザーおよび/またはVAEMのための検体のz位置決めOvertiltingは不明画像を提供します。そ?...
このビデオの記事では、プロトコルは、 シロイヌナズナの気孔複合体上のGFP-PATROL1ドットの動的挙動を監視し、測定するために与えられています。ここに示されているように、VAEM観測は、植物の細胞表面のライブイメージングのための強力なツールです。高感度EM-CCDはVAEM光学系では比較的弱い励起レーザの使用を可能にするため、GFP-PATROL1の監視のためにここに使用した実験条件下で...
著者は、開示することは何もありません。
I am grateful to Dr. Masaru Fujimoto for his technical suggestions for VAEM. I am also grateful to Prof. Koh Iba and Dr. Mimi Hashimoto-Sugimoto for providing GFP-PATROL1 transgenic plants, and discussions about PATROL1. I thank Prof. Seiichiro Hasezawa for his continuing support of my work. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number 25711017.
Name | Company | Catalog Number | Comments |
Inverted microscope | Olympus | IX-73 | |
TIRF unit | Olympus | IX3-RFAEVAW | |
TIRF objective lens | Olympus | UAPON 100 × OTIRF | NA = 1.49 |
Laser angle control box | Chuo Seiki | QT-AK | |
Optically pumped semiconductor laser | Coherent | SapphireTM LP USB 488-20 CDRH Laser | |
510–550 nm band-pass filter | Olympus | U-FBNA | |
EM CCD camera | Hamamatsu Photonics | ImagEM C9100-13 | |
C-mount camera magnification change unit | Olympus | U-TVCAC | |
MetaMorph software | Molecular Devices | MetaMorph version 7.7.11.0 | |
TIRF microscopy manual | Olympus | AX7385 | Instructions: Total Internal Reflection Illumination System (Printed in Japan on August 24, 2012) |
Immersion oil | Olympus | Immersion Oil Typr-F | ne = 1.518 (23 degrees) |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved