Method Article
脂肪体は昆虫の中央代謝臓器です。様々 な刺激に対する分離脂肪体組織の反応を研究することができます本物のオルガン文化システムを提案します。
昆虫の体脂肪は、虫の代謝と栄養貯蔵、肝臓と脊椎動物の脂肪質のティッシュの機能をミラーリングで中心的な役割を果たしています。昆虫の体の脂肪組織は通常昆虫の体全体に分散されます。ただし、しばしば腹部に集中して、腹部の体壁に接続されています。
蚊脂肪体は、卵の生産のために重大である卵黄タンパク質の唯一のソースです。したがって、蚊脂肪体組織の体外培養は蚊生理学研究のための重要なシステムを表す新陳代謝および、最終的に、卵の生産。脂肪体文化プロセス ソリューションおよび試薬、アミノ酸原液、ヒトスジシマカ生理食塩水塩原液 (AP)、カルシウム原液、脂肪体の培養培地などの準備から始まります。脂肪体解剖、実験的治療の順に処理が進みます。治療後、RNA シーケンス (Seq RNA)、qPCR、西部のしみ、プロテオミクス、メタボロミクスなど、さまざまな異なる分析を実行できます。
例実験、黄熱の蚊、ネッタイシマカ、アルボ ウイルス デング熱、チクングニア、ジカなどの主なベクトルから切除と脂肪体の文化を通じてプロトコルを示す.リポタンパクリパーゼ卵黄タンパク質と対照する知られている生理学的条件下で培養した脂肪体からの RNA は、遺伝子発現の調査のこのプロシージャの潜在的な有用性を示す RNA シーケンス分析の対象となった。
蚊は、マラリア、デング熱、チクングニア、ジカ1,2,3などの壊滅的な人間の病気のベクトルであります。これらの疾患を抑制するためと病気送信蚊の個体数を制御する強烈な国際努力にもかかわらず蚊媒介疾患の流行の発生がまだ一般的、とりわけ途上国における。多くのこれらの病気に対する効果的なワクチンが利用できなくまたは限られた有効性4、5の。感染を防ぐ最も効果的な方法は、殺虫剤トリートメントを使用して主に、蚊の個体数を制御することです。ただし、殺虫剤抵抗性蚊個体群の多くで開発し、世界6,7,8のまわりの共通の問題になります。蚊の生理学の研究は、新規ツールおよび病気を制御するための戦略の開発に不可欠です。
蚊の脂肪体は、栄養貯蔵、代謝恒常性、複製、および異物の異化9,10、11,12で中心的な役割を果たしています。それはトリグリセリド、グリコーゲン貯蔵タンパク質の中のアミノ酸の主なストレージ臓器です。それはまたほとんどの体液蛋白質および代謝産物の合成の場所として機能します。蚊の脂肪体は女性で彼らは血食事13,14を取る後に発生卵黄蛋白質の生産の唯一のソースです。
脂肪体の主たる細胞型、大型、倍数体の trophocyte または脂肪3,9,10,12です。脂肪体組織は葉や葉鞘に編成し、脂肪体の大きな葉が腹部の体壁に接続されている、腹部に位置する最大の部分と、蚊のすべての体の部分で見つけることができます。
ここで示した蚊脂肪体文化システムを 70 年代に開発し、脂肪体生理学10、特に現在の解析技術との組み合わせを研究するための強力なツールのまま。この手法の基礎は、腹部の体壁と関連付けられた脂肪体組織の分離に基づいています。腹部のキューティクルの疎水性と、没頭して腹部の脂肪体の添付の葉と培養液の表面に浮くされます。培養組織の酸素化の確保、気門および tracheolar 構造が保持されます。今後、我々 がこれらの準備を「脂肪体」として参照してください。分離脂肪体 (未発表結果) 適切な培地で培養したときに 12 時間以上実行可能に残る。脂肪体の文化はさまざまな脂肪体内分泌生理学9,10,12,15,16、に関する質問を対処している貴重なツール 17。
培養脂肪体は様々 な実験的に受けることができ、治療のタイミングは、決定は、捜査官を制御します。脂肪体の収集し、qPCR16,17,18,19, ウエスタンブロット18 を含む下流の解析処理潜伏期間の終わりに、、20、プロテオミクス21、またはメタボロミクス22。実験は、一緒に培養することができます何百ものグループに個々 の脂肪体から、さまざまなスケールで実行できます。
ここに含まれる代表的な結果は、アミノ酸および濾胞16,17、血液の食事活性化をシミュレートするためにステロイド ホルモン 20-ヒドロキシ脱皮ホルモンの存在下で培養した脂肪体から派生しました。 23,24。私たちは分析し、次世代シーケンス解析を介して活性化脂肪体対ないアクティブの差動遺伝子発現を比較しました。
1 ですソリューションと試薬の準備
2。郭清の準備
3。脂肪体解剖
4。脂肪体文化
例として脂肪体培養実験を行いすべて 20 自然発生するアミノ酸と 6 h の昆虫ステロイド ホルモン 20-ヒドロキシ エクジソン (10 μ M) の釣り合った混合物が含まれているソリューションにそれらをインキュベートし分離脂肪体を刺激.コントロールとして時間の同量のための AP の脂肪体が孵化します。
インキュベーション後、総 RNA は、製造元の指示に従って三試薬27を使用して分離された.抽出した RNA サンプルの量と質は、分光光度計、蛍光定量と agarose のゲルの電気泳動を使用して評価されました。RNA シーケンス ライブラリの総 RNA の 4 μ g を使用して生成された、2 つの異なる手法を使用して定量を行った。その後、ライブラリは、ペアの終了シーケンスの商用プロバイダーに送られました。
この実験の結果は、表 6のとおりです。アミノ酸と 20-ヒドロキシエクジソン最強の転写応答を示す遺伝子は、主に卵黄のタンパク質の遺伝子、前の結果11に一致していた。
図 1は、差動 1,256 の遺伝子発現レベルを示すヒートマップ 2 つの異なる治療後の培養脂肪体からの遺伝子の表現を示しています。
図 1.脂肪体培養で発現する遺伝子のヒートマップ。ヒート マップは各遺伝子 R ソフトウェア環境の一部であるヒートマップ パッケージ28を使用して異なるライブラリ内の特定のコピーの数に基づいて計算されます。暗い影は、高い発現を表します。式の統計的に有意な変動を持つ 1,256 遺伝子 (Q 値 < 0.05) が表示されます。遺伝子は (彼らの系統関係) に従っていない左側の樹形図で示されている彼らの平均発現量に基づいて並べられています。高アミノ酸 (AA) と 20-ヒドロキシエクジソン (20 e) 刺激後のアップまたはダウン調整式と遺伝子数に注意してください。AP =ヒトスジシマカ生理食塩水。遺伝子との相対発現量のリストについて補足のファイル 1を参照してください。この図の拡大版を表示するのにはここをクリックしてください。
アミノ酸 | 分子の重量 g/mol | mM 濃度 | 1 リットル当たりの mg | 300 mL ボリュームの mg |
アラニン | 89.1 | 26.68 | 2377.19 | 713.16 |
アルギニン | 174.2 | 26.68 | 4647.66 | 1394.3 |
アスパラギン | 150.1 | 26.68 | 4004.67 | 1201.4 |
アスパラギン酸 | 133 | 26.68 | 3548.44 | 1064.53 |
システイン | 121.16 | 10.68 | 1293.99 | 388.2 |
グルタミン酸 | 147.1 | 26.68 | 3924.63 | 1177.39 |
グルタミン | 146 | 26.68 | 3895.28 | 1168.58 |
グリシン | 75 | 53.32 | 3999 | 1199.7 |
ヒスチジン | 155.16 | 80 | 12412.8 | 3723.84 |
イソロイシン | 131 | 10.68 | 1399.08 | 419.72 |
リシン | 183 | 26.68 | 4882.44 | 1464.73 |
ロイシン | 131 | 26.68 | 3495.08 | 1048.52 |
フェニルアラニン | 165 | 10.68 | 1762.2 | 528.66 |
プロリン | 115 | 26.68 | 3068.2 | 920.46 |
セリン | 105 | 53.32 | 5598.6 | 1679.58 |
スレオニン | 119 | 10.68 | 1270.92 | 381.28 |
トリプトファン | 204 | 10.68 | 2178.72 | 653.62 |
チロシン | 181 | 5.32 | 962.92 | 288.88 |
バリン | 117 | 10.68 | 1249.56 | 374.87 |
メチオニン | 149 | 10.68 | 1591.32 | 477.4 |
表 1。アミノ酸原液 x 4。
コンポーネント | 50 ml ddH2O に追加グラムの重量します。 |
塩化ナトリウム | 8.0 g |
KCl | 0.074 g |
MgCl2-6 H2O | 0.120 g |
NaHCO3 | 0.0250 g |
表 2.20 X 塩原液。
コンポーネント | 100 ml ddH2O に追加グラムを重量します。 |
CaCl2-2 H2O | 0.90 g |
g > テーブル 3。カルシウム原液 x 50 。
コンポーネント | 原液濃度 | 100 ml のバッファーのボリューム株式 |
トリス pH8.0 | 1 M | 5 mL |
EDTA | 0.25 M | 2 mL |
塩化ナトリウム | NA | 0.3 g |
ddH2O | NA | 100 ml (~ 93 mL) |
表 4.トリスバッファー 。
コンポーネント | ボリューム在庫 200 ml |
アミノ酸原液 | 150 mL |
塩原液 | 10 mL |
カルシウム原液 | 4 mL |
TES バッファー | 10 mL |
ddH2O | 26 mL |
表 5 。脂肪体培。
注釈 | 遺伝子の記述 | フォールドの変更 | P 値 |
AAEL006138 | ビテロジェニン B | 3443 | 2.52E-112 |
AAEL006126 | ビテロジェニン C | 2795 | 8.64E-91 |
AAEL006563 | 水子カルボキシペプチダーゼ | 1002 | 2.17E-119 |
AAEL010434 | ビテロジェニン A | 220 | 1.14E-27 |
AAEL006542 | 水子カルボキシペプチダーゼ | 185 | 2.14E-65 |
AAEL012678 | AAEL003006-PA [ヤブカ属 aegypti](65%) | 96 | 4.00E-70 |
AAEL000080 | タンパク質 | 82 | 6.69E-188 |
AAEL015312 | 水子カテプシン B | 77 | 1.27E-15 |
AAEL009588 | 核内受容体 3 | 75 | 4.58E-56 |
AAEL010529 | タンパク質 | 66 | 1.32E-29 |
表 6.実験結果。
補足ファイル 1.このファイルをダウンロードするここをクリックしてください。
昆虫の器官培養は昆虫内分泌学、開発、および特定の臓器や細菌共生29,30,31、間の相互作用を調査するためにも代謝を研究に多用されました。 32,33,34。脂肪体器官培養体外アミノ酸輸送法規の蚊と他の双翅目16,17,35卵黄タンパク質の生産の研究に使用されました。,36. 琪プロセス中に蚊脂肪体は卵黄蛋白質12 の大量に合成する体液からの血液の食事由来のアミノ酸をインポートする特異性の高いアミノ酸トランスポーターの配列を使用します。、19,35,36。脂肪体の文化は、このコンテキスト18脂肪体の栄養条件の描写に尽力しました。
メスの蚊は、原料の品質は、これらの実験の成功にとって重要です。蚊幼虫の下で混雑した条件で育ち、通常高栄養飼料で飼育は、最高の結果を生みます。実験デザインの観点から研究室で蚊脂肪体培養条件を確立する際に考慮するいくつかの重要な変数があります。我々 は、脂肪体の遺伝子発現は個々 の生活史と蚊11,22の栄養状態によって大きく変わる前の研究で示した。蚊培養条件は均一サイズの可変性を抑えるべきであるし、実験の蚊の栄養を有します。また、担当者が、解剖は、一貫性のある結果を迅速かつ正確な解剖、十分にトレーニングする必要があります。分離脂肪体の細胞生存率は、異なる染色法37,38を使用して確認できます。
脂肪体培養実験の実験的なデザイン考慮すべき解剖数一定期間で可能。大量の脂肪体が必要な場合、複数の解離セッションまたは複数 dissectors は必要かもしれません。蚊や他の虫の脂肪体文化の in vitroの将来のアプリケーションの広い範囲があります。それは昆虫防除のため潜在的な薬剤の候補者をテストするときに便利になります。脂肪体 trophocytes で特定のレポーター蛋白質を表現する昆虫の遺伝子組み換え技術の使用は、新しい手法を用いて、脂肪体の生理学の研究のための強力な生物検定を開くでしょう。
何を開示する必要があります。
この研究は、2014 年 NMSU HHMI グラント #52008103、NSF PGR 付与 #1238731 NIH グラント #SC1AI109055、によって支えられました。我々 は脂肪体培養実験とテクニカル サポートのため Lavesh Bhatia NMSU 春 2015 BIOL302 分子 Methods クラスの参加者に感謝します。
Name | Company | Catalog Number | Comments |
Scissors | Fiskars | 83872 | |
Fly pad | Genesee Scientific | 789060 | |
Battery-powered aspirator w/ collection vial | Hausherrs Machine Works, Inc. | 3740-01-210-2368 | |
Fine tip forceps | World Precision Instruments, Inc. | 500085 | |
Light microscope | Leica Microsystems | ||
96 well plate | Sigma | CL S3383 | |
Sucrose | Sigma | S9378 | |
Alanine | Sigma | A7627 | |
Arginine | Sigma | A5006 | |
Asparagine | Sigma | A0884 | |
Aspartic Acid | Sigma | A9256 | |
Cysteine | Sigma | W326305 | |
Glutamic Acid | Sigma | G1251 | |
Glutamine | Sigma | G3126 | |
Glycine | Sigma | G2879 | |
Histidine | Sigma | H6034 | |
Isoleucine | Sigma | I2752 | |
Lysine | Sigma | L5501 | |
Leucine | Sigma | L8000 | |
Phenylalanine | Sigma | P2126 | |
Proline | Sigma | P0380 | |
Serine | Sigma | S4500 | |
Threonine | Sigma | T8625 | |
Tryptophan | Sigma | T0254 | |
Tyrosine | Sigma | T3754 | |
Valine | Sigma | V0500 | |
Methionine | Sigma | M9625 | |
NaCl | Sigma | S7653 | |
KCl | Sigma | P9333 | |
MgCl2-6H2O | Sigma | M2670 | |
NaHCO3 | Sigma | S5761 | |
CaCl2-2H2O | Sigma | C8106 | |
Tris pH8.0 | Sigma | T1503 | |
EDTA | Sigma | E6758 | |
ddH2O | Sigma | W4502 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved