JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

無細胞転写・翻訳プラットフォームの新世代は、生化学システムの in vitro遺伝子回路の実行を構築するために設計されています。この記事で私たちはすべて大腸菌無細胞 TXTL システムを使用して彼らのゲノムからのバクテリオファージ MS2、ΦΧ174、T7 などの合成方法について説明します。

要約

試験管反応の基礎および応用科学を実行する新しい機能を提供するより汎用性とモジュール性、エンジニア リング、無細胞転写・翻訳 (TXTL) システムの新世代。過去 10 年間携帯無料 TXTL 斬新な学際的な研究領域定量と合成に関連する生物学の広い範囲のための強力な技術となっています。新しい TXTL プラットフォームは、構築し、合成又は天然の遺伝子回路の実施により生化学システムを尋問すると特に便利です。体外TXTL 実証されています急速にプロトタイプ規制要素と生物学的ネットワーク同様に要約として便利な分子の自己組織化メカニズムは、生活システム。この資料でどのように伝染性のバクテリオファージ、MS2 (RNA)、ΦΧ174 などを述べる (ssDNA) および T7 (dsDNA) 完全すべて大腸菌、無細胞 TXTL 系を用いたワンポット反応で彼らのゲノムから合成されます。3 つの coliphages の合成は、プラクの試金を使用して定量化されます。どのように合成バクテリオファージの収量反応の生化学的設定に依存を示します。ペグの 8000 系の制御された濃度をエミュレート分子クラウディング大きさの命令によって合成されたファージの量に影響します。バクテリオファージを増幅する方法と彼らのゲノムを浄化する方法について述べる。プロトコルとこの作品で示された結果のセットは無細胞合成生物学と工学の学際的な研究者に関心のはずです。

概要

過去 10 年間無料のセルの表現技術を創発的学際的な研究領域合成と定量的に関連する生物学の新しいアプリケーションに対応し設計されています。もともと独立した生きている有機体の蛋白質を表現するために使用、新しい携帯無料 TXTL システムは両方基本的な応用科学12、かなりこの技術の範囲を広げるために開発されています。TXTL プラットフォームの新世代はユーザーフレンドリーをできるように設計されている効率的 (到達するとバッチ モード3におけるタンパク質合成の 2 mg/mL) より転写4のレベルで汎用性とするようモジュールを簡単に統合自然小説または既存の生物学的システム5,6の機能を拡張する合成関数。特に、携帯無料 TXTL システムとなっている規制要素または小さな遺伝的回路7,8,9などの遺伝的プログラムのラピッドプロトタイピングの便利なデザイン、ビルド、テストを減らすことによって数日サイクルします。驚くことに、新しい TXTL システムは、coliphages10,11, アクティブなゲノムの再構成をサポートする十分な性能を示す強いの完全な合成など大規模な DNA プログラムを処理できます。DNA は、生き物のエンティティがエンコードされます。

TXTL システムは、従来の in vitro建設的な生化学的アッセイに比べて多くの技術的な優位性を提示します。携帯無料 TXTL は、遺伝子発現のプロセスを生きている細胞の複雑な細胞質とは対照的削減とオープン環境で最終製品にリンクします。TXTL では、DNA を利用して、現代 DNA のアセンブリ技術と手頃な価格、気難しいタンパク質精製工程を必要としないに加えて高速生化学システムの in vitro、再構成します。無細胞発現分子間相互作用12の深い郭清をできるように、生化学的な反作用の部品のほとんどへの直接アクセスを提供します。TXTL 反応では、生きている細胞ではほとんど不可能で生化学と生物物理設定変更できます。これらの利点と最近の改善を考えると、TXTL 技術、合成および量的な生物学の代替プラットフォームとして人気が高まってください。それは TXTL 反応の実行に関連する適切なプラクティスを開発するためにこのようなプラットフォームを使用する方法を理解する重要な TXTL を使用して、研究コミュニティは急速に成長しているし、TXTL は、バイオ エンジニア リングの標準的な技術になって、結果の解釈。

この記事での合成、ワンポット反応でバクテリオファージのゲノムから11、MS2 などすべてのエシェリヒア属大腸菌の TXTL システムを使用する方法について説明 (RNA、3.4 kb)、ΦΧ174 (ssDNA、5.4 kb)、および T7 (dsDNA、40 kb)。どのようにファージ量合成反応 (マグネシウムとカリウム濃度) の生化学的な設定の一部に関して変更を示します。ペグ範囲 8000 濃度をエミュレート分子クラウディング バクテリオファージ合成に劇的な効果は、桁違いです。同時に転写、翻訳のプロセスを要約、関連生物学および生物物理学の基本的な質問に対処するための興味深い自己集合、単一試験管反応でこのような大規模な生化学的なシステムの実現10 (遺伝子発現制御、自己集合), だけでなく、新しいナノ構造13を構築するバクテリオファージ関数情報の転用などのアプリケーションを開発します。TXTL の実用的なに加えて我々 はプラクの試金によってバクテリオファージ増幅、ゲノム抽出と精製・ ファージ定量化メソッドを提供します。本稿では提案手法はエシェリヒア属大腸菌の抽出による無細胞システムを使用し、バクテリオファージに興味がある者に適しています。

この作品で提示プロトコルはフォローとしてまとめることができます: 1) バクテリオファージ増幅 (日 1: 接種の準備細胞、2 日目: 単一のプラーク、複数のバクテリオファージの成長と濃度、および 3 日目: バクテリオファージの浄化)、2) 二重座礁させたゲノム DNA の抽出(フェノール/クロロホルム抽出)、3) 携帯無料ファージ反応と抗体実験 (日 1: 宿主細胞をプレートし、寒天プレートを作る 2 日目: 無細胞反応とホスト細胞の前培養と一日 3: ホスト細胞文化およびバクテリオファージ価)。

Access restricted. Please log in or start a trial to view this content.

プロトコル

注: 以下増幅し抽出法は主として多くの二本鎖 DNA ファージ、バクテリオファージ T7 など、腸内細菌のファージ T4、または腸内細菌バクテリオファージ λ (L) の汎化可能な。彼らは主にそのゲノムが商業源からの購入のため用意されていないバクテリオファージのため使用される

1 バクテリオファージ増幅

注: 単一プラーク, マルチ サイクル (SPMC) バクテリオファージの生産技術が陳 の T4 ファージの説明されて。 14 次のバクテリオファージの増幅、DNA 抽出法は、大腸菌 二本鎖 DNA ファージ、例えば T7、T4、または l. のための一般化プロトコルの究極の成功に大きく依存して選択したホスト細胞株 ' 重複感染の条件に耐える能力。宿主細胞が重複感染の下で安定したまたは重複感染が決して到達しない、換散がこの重要な段階の間に決して到達しない場合、合流の換散のプロトコルを続行することをお勧めします。高速遠心分離とファージを遠心速度でペレット化を介して細胞残屑を分離するが含まれます。すべての次の条件およびパラメーターの一般的な出発点としてものです。ローカル ホストの細胞ラインの最適条件が異なる; 場合があります。判断し、適切な条件を順守

  1. 接種細胞の準備
    1. 10 mL 大腸菌 宿主細胞と 15 mL の培養管のルリア ベルターニカミラ (LB) メディアを接種する など、B または K12
    2. 250 rpm と 37 にシェーカーで ° c. を残す一晩彩度に成長します
  2. シングル プラーク、マルチ サイクル バクテリオファージの成長および濃度
    1. 主務のバクテリオファージのプラクのプレートを準備する暖かい 1 h、37 ° C でいくつかの LB 寒天培地プレートまたは一晩します
    2. ファージ株式 (例えば T7、T4、または L) 10 ~ 2-10 3 ファージ/mL を目指して LB 媒体の濃度既知のいくつか希釈液を準備します
    3. 各プレートに集中して宿主細胞の一晩成長の追加 100 μ L.
    4. 準備の選択ボリューム バクテリオファージ希釈 10 100 バクテリオファージ/プレートから範囲に対応します。各プレートにバクテリオファージ希釈の必要量を追加 (例えば、100 μ L の 10 3 ファージ/mL; これは 〜 100 プラクを生成する必要があります)。37 ° C でプレートをインキュベートし、カウント アップ タイマー (+ 0 h) を開始します。4-5 博インキュベート
    5. 250 mL フラスコとシェーカー 250 rpm と 37 に設定の場所で 49 mL LB メディアを準備 ° C
    6. で + 2.5 h、希薄 49 mL の LB 培地を含む予め温めておいたフラスコに一晩成長から飽和細胞文化の 1 mL を追加して 50 倍の細胞します。セルがログの増加 (+ 4-5 h) に達すれば、測定吸光度 600 nm (外径 600)。1.0 = 8 x 10 の OD 600 変換を用いた細胞の濃度を決定する 8 セル/mL
    7. 。 2 x 10
    8. Dilute 7 セル/mL 追加ポンド成長媒体を使用して。インキュベーターからバクテリオファージのプラクを含む寒天プレートを取り外します。すぐにコアし、1 つのプラークを除去する滅菌パスツール ピペット末を使用します。希薄化後のセルにプラークを爆破し、37 ° C (+ 6-7 h) さらに 2 時間インキュベートします
    9. 1.5 mL チューブ、追加の 10 μ L のクロロホルム (CHCL 3)、すぐに高速でボルテックスに 500 μ L のサンプルを取って、完全な感染症のためのテスト。ソリューションが明らかにかどうかを確認します。一度細胞が完全に感染している別の 2 h (+ 8-9 h) インキュベートします
      。 注: セルは、完全に感染している場合彼らが急速に溶解 (< 2 分) ソリューションを明らかにします。その他の結果は、以下の ディスカッション セクション でと見なされます。セル superinfected されますが、この時点まで溶解がないです。DNase や遠心分離によって収穫の添加がバクテリオファージの劣化を防ぐためにすぐに始める必要があります溶解が始まる場合
    10. 5 μ G/ml と遠心分離機に追加 DNase 細胞ペレットへの 4 ° C で 8,000 x g で。上清を捨てます。5 μ g/ml の DNase バッファーの 1 x TRIS 塩化マグネシウム (TM) (50 mM トリス ph 7.8, 10 mM MgCl 2) 10 mL にペレットを再懸濁します。高速では、細胞を溶解 CHCL 3 と渦の 500 μ L を追加します。4時 10 分、12,000 × g で遠心分離により明らかにする ° c. デカント 15 mL の円錐管に 4 店清 ° C

2。バクテリオファージの精製

注: ショ糖浄化、バクテリオファージのサイズに大きく依存します。分離するバクテリオファージの質量に関する考慮事項が行われなければならないし、勾配条件に調整が実行されます。10 以上 13 バクテリオファージ/mL の最終的なウイルス抗体がこの方法で簡単に達成可能である

  1. TM バッファー x 1 w/v スクロースを 5% と 45% の 12 mL を準備します
  2. 4 の遠心管に 45% ショ糖のピペッティング 2.5 ml 準備 4 x 5-45% のサッカロースの勾配。トップ 〜 2.6 mL 5% ショ糖、液管の縁から 2 mm に達すると停止します
    。 注: はショ糖液の表面が付いている接触のピペット チップを置き、非常にゆっくりと液体を分配します。ライターのショ糖液は、明確な境界を形成の上に重い、フロートされます。背景光に対して保持されている場合に、適切に階層化されたソリューションの 〜 1 mm のインターフェイスがあります
  3. ミックス グラデーションを形成器 43 グラデーションを使用して傾斜管回転 23 rpm で 86 ° s。すぐに必要な場合パラフィン フィルムでカバーし、4 で保管 ° C
  4. それぞれのトップから削除 500 μ L 準備 1 mL pipettor と ± 0.002 g. 内にバランスを蔗糖グラデーション
  5. プール ファージ懸濁液すべてのチューブ (ステップ 1.2.9) から。1 mL ピペットを使用する液体の表面が付いている接触の先端および急速なピペッティングを混在させないよう注意しながら、ショ糖密度勾配の上にボリュームを非常にゆっくりと調剤で、懸濁液 500 μ L を追加します。70,000 x g で 4 ° C で 20 分間遠心
    メモ: 残高 ± 0.002 g. 小さいファージ内に準備されたグラデーションをかけてまで 1 h.
  6. 滅菌注射器と鈍カニューレを使用してファージ バンドを削除します
    。 注: 側から見ると、バクテリオファージ バンド厚くてミルキー周辺は、高さ、約 5 mm と比較して、遠心分離機管の下の半分の方法に位置しています。
    1. 埋没、鈍カニューレ先端までのソリューションには、バクテリオファージ バンドの非常に上端を中心です。バクテリオファージ バンドの大半が削除されるまで、シリンジのプランジャーを描画することによってバンドを削除します
  7. 3 4 遠心チューブに中断されたバクテリオファージとショ糖ボリュームを追加します。以上 1.5 mL/チューブを追加します。3 ~ 4 mm 冷 1 管の上部から塗りつぶし TM x。パラフィン フィルムでカバーし、ミックスに反転します。超遠心機と 4 ° C で 1 時間 145,000 x g でスピンに戻る場所ペレット。小さいファージは最大 2 h. をかかることがあります
  8. はすぐに上澄みを注ぎ、使い捨てワイプで逆さまにドレインします。余分な上清を除去する滅菌綿棒でチューブの内側を拭いて
  9. 分割 200-400 μ L 冷たい 1 x すべて TM ペレットし、一晩 4 ° C で再懸濁します; 揺れは必要ではありません
    。 注: ペレットは、クリーンではない場合、膜糸ビット など DNA など、プールおよび 17,000 x g に遠心機で追加の遠心分離を行う
  10. 抗体を作る前日 10 mL LB 成長媒体で 大腸菌 宿主細胞の文化を準備し、一晩 250 rpm と 37 ° C に設定振動インキュベーターに残します。バクテリオファージ株式の価を行う前に、少なくとも 1 h 37 ° C で培養皿の適切な量をインキュベートします
    。 注: めっきされるバクテリオファージ株式の希釈液の数によって異なりますをインキュベートする板の数: バクテリオファージ株式のそれぞれのユニークな希釈が 2 つの培養皿を必要とする (例えば、バクテリオファージ株式の 4 つの異なる希釈 8 培養皿が必要).
  11. は、2.5 g LB と 0.6 g バクト-寒天を 100 mL のボトルに追加することによって上の寒天の 100 mL を準備します。脱イオン水 100 mL とオートクレーブのボリューム内に固体を溶解します。オートクレーブ後ゆっくりと反転ボトル 6-8 回ソリューション全体で寒天を均質化します。. の温度を平衡に 15 〜 20 分の 45 ° C の水浴でボトルを配置
  12. LB ソリューションが付いているバクテリオファージ在庫のシリアル希薄を準備します
    1. 追加 990 μ L LB 10 μ L ファージ株式 100 希釈用。渦を均質化します。10 倍希釈、900 μ L にバクテリオファージ株式の 100 μ L を追加ポンド渦を均質にします
    2. 斑 (10-100 斑) の可算番号を取得する必要な回数として上記の希釈系列を繰り返します
      。 注: これを達成するため、希釈するバクテリオファージ在庫 2-3 桁のバクテリオファージ/mL の反応の面で期待されるバクテリオファージの収穫よりも少ない。たとえば、特定バクテリオファージ株式 10 11 伝染性のバクテリオファージ/mL が含まれる場合は、10 バクテリオファージ株式をプレート 8-倍または 10 9-倍希釈
  13. (培養管の数はめっきされるバクテリオファージ株式希薄の数に等しい) 14 mL の培養管を組み立てることによってバクテリオファージの抗体のための領域を準備します。氷に手順 2.12 から希薄バクテリオファージ株式のサンプルとステップ 2.10 から宿主の細菌細胞を配置
  14. 準備マスター ミックス 5.25 mL 上の寒天 (ステップ 2.11) をピペットで 220 μ L はバクテリオファージのサンプル (ステップ 2.12) を希釈し、50 μ L 細菌に宿主細胞 (ステップ 2.10) 14 mL 培養管します。カルチャ チューブと高速で渦をキャップします
    1. 4 で残りのバクテリオファージ ソリューションを格納 ° C
  15. 37 ° C の定温器からの 2 つの培養皿 (ステップ 2.10) を取得します。(泡) なしの最初のプレートの中心にゆっくりとマスター ミックスの 2.5 mL を追加します。優しく手で全体の文化板にまたがるようにマスター ミックスを均等に配布するプレートを回転させます。2 番目のプレートを繰り返します。上の寒天の凝固をように 20 分を待ちます。4-7 のための 37 ° C でプレートを孵化させなさい
  16. 斑をカウントし、各反作用のサンプルのバクテリオファージの濃度を決定する
    。 注: 斑は 1-2 mm クリア サークルの宿主細胞のカーペットで不透明として表示されます。代表の結果は、 図 1 を参照してください。成功したバクテリオファージの生産 10 12-10 13 バクテリオファージ/mL の最終濃度になります

3。二本鎖ゲノム DNA 抽出

注: 揺れ、希釈、フェノールと水相間の厚さ、固蛋白質境界層を開発する遠心分離手順を最適化する必要があります。これは蛋白質の汚染物の無料最高純度ゲノムを生成します。初期の希釈は最終的なバクテリオファージの抗体に依存です。非常に高価ファージ株式 (≥ 10 13 バクテリオファージ/mL) 低価の在庫 (10 ~ 10-10 11 バクテリオファージ/mL) が必要がありますのみ、抽出前に、の 10-20 倍希釈を必要があります、2 倍または none。以降の手順で固体蛋白質層を形成することは困難だ、水性懸濁液は高 DNA 濃度のため運転できる粘りの抽出を続行する前にバクテリオファージ株式より高い希釈を検討してください。いずれかをピペッティング時に、ワイドボア ピペット チップを使用することが重要です任意のゲノム処理ステップ水溶液。多くのバクテリオファージのゲノムは非常に大きく、ピペットせん断を通して簡単に断片化されました。さらに、任意のボルテックス明示的避けるべき、これは深刻なゲノムをせん断します

  1. X 新しい 1.5 mL チューブに TM バッファー 1 ステップ 2.9 を 400 μ L からのバクテリオファージの株式の一部を希釈します
  2. は、Tris:Phenol:Chloroform の等量を希釈に追加します。5 分遠心 5 ~ 10 分、ベンチトップ遠心分離機で 17,000 x g で得られたエマルジョンの研究室にロッカーの上に優しくまたは手で混合物を振る
    注: 基になるフェノール相の表面に明確な白いタンパク質の層が存在します
  3. 界面の境界を邪魔しないように世話新しい管へ上部の水相を削除します
  4. 3 フェノール抽出の合計のための 2 回のステップ 3.2 3.3 追加を繰り返します。新鮮な管に水相を転送し、CHCl 3 の等しい量を追加します。振ると遠心分離機 (ステップ 3.2)。きれいな管に水溶液中の DNA サンプルを転送します
  5. は、浄化された DNA の量を見積もる。3 M 酢酸ナトリウム (CH 3 COONa) の 0.4 のボリュームと 95% のエタノール (エタノール) の 3 つのボリュームを追加します。一晩沈殿物のための-20 ° C のフリーザーに配置します。10-15 分、ベンチトップ遠心分離機で 17,000 × g で遠心分離
    注: DNA が、すぐに脱水してチューブのサスペンションの塊として見えるようになります。適切な結果のペレットは白と管の底面に対してよくまとめ
  6. は、削除し、デカントまたはピペットで上澄みを廃棄します。追加 500 μ L 70 %etoh ペレット フロート チューブの底から無料までチューブを軽く振ると。17,000 x g で 5 分間削除で遠心し、エタノール、ペレットを邪魔しないように世話を破棄します
  7. 繰り返し手順 3.6。空気は、ペレットに 30-60 分追加 50 μ L ddH 2 O または卓上ペレットを乾燥し RT で 1 時間インキュベートまたは再懸濁しますに 4 ° C で一晩します。280 吸収測定を使用して DNA の濃度を決定する nm
    。 注: 予想される濃度は、0.5-5 μ g/μ L は、この手法を使用します。最終的なゲノムの濃度を決定するため全ゲノムの分子量で割ります

4。無細胞ファージ反応とファージ価実験

  1. 25 g LB 培地と 15 g バクト寒天固準備、1 L ボトルに注ぐし、1 l. オートクレーブに脱イオン水を追加します
  2. 殺菌後ボトル泡の形成を避けるためにゆっくりと 6-8 回世話を反転します。ボトル反転、1 L ソリューション全体における寒天固をホモジナイズしてください。培養皿に分注する前に 20 分の 58 ° C の水浴でボトルを配置します
  3. LB 寒天液の温度が平衡は、一度開いている培養皿に近い環境を消毒する培養皿の横に炎を準備します。採取しながら寒天の凝固を避けるために風呂の水 1 L ボトルを保持します。100 x 15 mm 培養プレートに 25 mL を追加します。1 L は 40 の培養皿が生成されます
  4. 1 つの培養プレートを脇、RT で少なくとも 1 時間固める; このプレートは宿主細胞のめっきに使用されます。ほかの 39 培養皿は、4 ° C でした店で 2 日間の固化または抗体を作るためにすぐに使用できます
  5. は、適切な菌株 (例えば ホストをストリー キングで宿主細胞をプレートします。T7 B)-80 ° c、LB 寒天培地培養プレート上に格納されたいます。環境汚染を避けるために開いた炎の横に止めた。37 ° C で一晩インキュベートします。無菌環境での作業が不可欠であるので、宿主細胞ある抗生物質耐性
  6. 無細胞反応
    注: 携帯無料 TXTL 反応は、原油 エシェリヒア属大腸菌 の抽出 (9.9 8.9 mg/mL 蛋白質) 反応バッファーとファージのゲノムで構成されています他の 67% 33% で構成されます。粗抽出物を作製し、以前説明した 15 , 16。最終的な反応条件: 9.9 8.9 mg/mL タンパク質 (粗野なエキス) から、各アミノ酸は前述の 17、および説明するエネルギー ミックス ソリューションとして準備から 3-6 mM 3-4 mM 40 〜 100 ミリメートル K-グルタミン酸塩、2-4% PEG 8000 Mg グルタミン酸以前 15 から成る 3.33 0.33 mM DTT、50 mM HEPES、1.5 mM ATP、GTP、0.9 mM CTP と utp ケーブルは、0.2 mg/mL tRNA、0.26 mM CoA、0.33 mM ナド、0.75 mM キャンプ、0.068 mM フォリン酸、1 mM スペルミジン、30 mM 3 PGA。DNA 型バクテリオファージは 0.5-10 nM のゲノムの濃度を必要とし、RNA 型ファージは、50 〜 150 nM の範囲を必要とします。最終反応濃度は合成特定のバクテリオファージに一意であり、上記の範囲内となります。反応の最適な酸素は、最終的な反応ボリューム 10-20 μ L の間する必要があります。ゲノムの分子の形に依存する反作用のプロトコルで小さなバリエーションあります。たとえば、線状ゲノム分子 recBCD 酵素粗抽出物の存在による線形 DNA 断片の消化を阻害する反応の追加コンポーネントが必要です。
    1. 完了、" 反応の詳細 " 総反応数と反応の最終巻を入力して 表 1 (PhageTXTL_JOVE) のセクション
    2. は、一定のコンポーネントと反応の可変コンポーネントを決定することによって実験をデザインします。最終反応量とサンプル数の積に一定の反応成分の合計量の比率であるマスター ミックスの小数の容積率を入力します。ストックと反応試薬の最終濃度を入力、" マスター ミックス反応レシピ " PhageTXTL_JOVE のセクション。ストックとテストする変数 reagent(s) の最終濃度を入力します
      。 注: 反応コンポーネントのボリュームが自動的に計算されますマスター ミックス ボリュームおよび個々 の反応の最終巻に基づいています
    3. チューブの必要量を削除 (に示されている、" の解凍がチューブ " PhageTXTL_JOVE.xlsx のセクション) 細胞粗抽出液、エネルギー バッファー ミックス、-20 ° C または-80 ° C と氷の融解からアミノ酸ミックス ・
      (必要な) 場合、コンポーネントと同様の複数の因数を組み合わせる注: 一度融解したもの、です
    4. 因数指定された原油量抽出、反応量の 33% 微量遠心チューブにします
    5. は、表 1 に従ってマスター ミックスを調製します。すべての下位コンポーネントを均質化 " マスター ミックス反応レシピ " ボルテックス。粗抽出物に各コンポーネントの適切なボリュームを追加します
    6. (例えば T7)、線形 DNA のゲノムとバクテリオファージを使用して場合は、反応 11 にバクテリオファージ lambda の gam 蛋白質の 1 μ M を追加します。渦ソリューションを均質化と氷上で 5 分間反応を配置します。これは粗野なエキスの内因性である複雑な recBCD によって線形 DNA 部分の消化を阻害する
    7. の表 1 に従って最後のコンポーネントを追加すると、ボルテックスによって反応を均質化します。N マイクロ遠心チューブ用にマスターの組合せを分割します
      。 注: 各分割の体積は小数のマスター ミックス ボリュームの割合の製品と反応の最終巻です。たとえば、90% の小数のマスター ミックス容積率と 12 μ L の反応量は、各分割の体積は 10.8 μ L.
    8. 追加マスター ミックス配列の可変コンポーネントの指定されたボリューム (表 1 参照)。望ましい最終的な反作用ボリュームに到達する各反応に水を追加します。ボルテックスによって各反応を均質化します。少なくとも 8 時間または一晩 29 ° C で遠心管をインキュベートします
  7. ホスト細胞の前培養
    注: 一晩前培養は希釈 50: 1 価実験に使われている宿主細胞を感染効率を高める中間ログの段階で確実にします。中間ログ細胞は 10 倍によって再度濃縮し、氷の上保存されています。
    1. 5 mL LB 3-5 健康的なホストの細胞群れ体の培養チューブに接種滅菌ピペット チップを使用しています。汚染を避けるため火気の横に作業
    2. では、16 時間または一晩 37 ° C および 250 rpm での振動のインキュベーターで培養管を孵化させなさい。セルは次の日に飽和段階に達することができる
  8. バクテリオファージの抗体の細胞文化およびサンプル準備をホスト
    1. 50 mL LB 500 mL 三角フラスコとカバーにアルミ箔を分配します。20 分の 37 ° C でフラスコを暖かい
    2. 37 ° C で 3-4 時間と 250 rpm で揺れのために予め温めておいたポンド インキュベートにホスト細胞一晩前培養分注 1 mL
    3. 遠心分離機 5,000 x g. で 10 分の 50 mL のホスト細胞培養を破棄ポンド
    4. 寒さ (4 ° C) 5 mL LB でペレットを再懸濁し、氷を離さない
    5. 価実験を開始する前に 1 時間インキュベート 37 で培養皿 ° C
      注: 各ユニークなファージ反応 (および対応する希釈倍率) 2 つのプレートが使用されます。さらに、実験コントロール (代表的な正と負のコントロールの 図 1 を参照) の 4 版をインキュベートします
    6. 上の寒天 (ステップ 2.11) の 100 mL を準備します
  9. 2.12 のセクションで説明されているように LB ソリューションと携帯無料反応の連続希釈を準備します
  10. ファージ価
    注: は、培養皿が少なくとも 1 時間インキュベートし、オートクレーブから除去した後 15 〜 20 分の 45 ° C の水浴は、上の寒天プレートを開始します。
    1. 価最終的な細胞遊離反応 LB ソリューション セクション 2 の説明に従って手順 2.14 2.16

Access restricted. Please log in or start a trial to view this content.

結果

4 つの代表的な結果を示します。図 1、携帯無料 TXTL システムとファージ DNA 株式はリビングで汚染されないように否定的なコントロールのセットを提案するエシェリヒア属大腸菌のセル。我々 はそのまま大腸菌の無細胞 TXTL システムが無いことを確認 (図 1A 図 1B

Access restricted. Please log in or start a trial to view this content.

ディスカッション

次の陳の手法14 SPMC、重複感染の適切な条件を決定する際の重要なステップは達されます。最も密接にホスト株の重複感染に耐える能力を制御するパラメーターは頻繁に感染しているバクテリオファージの初期濃度です。宿主細胞は、バクテリオファージの非常に少量の初期感染前に対数増殖期でなければなりません。最終的には、バクテリオファージはまた対数増...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者宣言次競合金融利益のため: Noireaux 研究所は、MYcroarray、MYtxtl 無細胞タンパク質発現キットのディストリビューターから研究資金を受け取る。

謝辞

この材料は (v. n.) に海軍研究所受賞番号 N00014-13-1-0074 によってサポートされる作業に基づいて、人間科学フロンティア許可番号 RGP0037/2015 (砲兵/ベトナム) と二国間の科学技術振興財団 (v. n.) に 2014400 を与えます。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Ultracentrifugation tubesBeckman Coulter344057
Conical tubesFalcon352070
Gradient makerBioComp Gradient Mastersee Anal Biochem. 1985 Jul;148(1):254-9.
Syringe and Blunt CannulaMonoject8881513918 and 888202017
Wide-bore pipette tipsFischerbrand02-707-134
Plaque counterNew Brunswik ScientificColony Counter Model C-110
Culture tubesFischerbrand14-961-33
Cell-free systemMycroarray IncMytxtl
BioComp Gradient MasterBioComp InstrumentsModel 105ME
LB agar plate recipe25 g/L Luria-Bertani medium (LB Broth, Miller - Fisher BioReagents product number BP1426) and 15 g/L Bacto-Agar solid (Brenton, Dickenson and Company - product number 214010).

参考文献

  1. Carlson, E. D., Gan, R., Hodgman, C. E., Jewett, M. C. Cell-free protein synthesis: Applications come of age. Biotechnol Adv. , (2011).
  2. Hodgman, C. E., Jewett, M. C. Cell-free synthetic biology: Thinking outside the cell. Metab Eng. , (2011).
  3. Caschera, F., Noireaux, V. Synthesis of 2.3 mg/mL of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie. 99, 162-168 (2014).
  4. Shin, J., Noireaux, V. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol. 1 (1), 29-41 (2012).
  5. Chemla, Y., Ozer, E., Schlesinger, O., Noireaux, V., Alfonta, L. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnol Bioeng. , (2015).
  6. Hong, S. H., Kwon, Y. C., Jewett, M. C. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Frontiers in Chemistry. 2, (2014).
  7. Noireaux, V., Bar-Ziv, R., Libchaber, A. Principles of cell-free genetic circuit assembly. Proc Natl Acad Sci U S A. 100 (22), 12672-12677 (2003).
  8. Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V., Murray, R. M. Linear DNA for Rapid Prototyping of Synthetic Biological Circuits in an Escherichia coli Based TX-TL Cell-Free System. Acs Synthetic Biology. 3 (6), 387-397 (2014).
  9. Takahashi, M. K., et al. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions. Methods. , (2015).
  10. Shin, J., Jardine, P., Noireaux, V. Genome Replication, Synthesis, and Assembly of the Bacteriophage T7 in a Single Cell-Free Reaction. ACS Synthetic Biology. 1 (9), 408-413 (2012).
  11. Garamella, J., Marshall, R., Rustad, M., Noireaux, V. The All E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. ACS Synth Biol. , (2016).
  12. Karzbrun, E., Shin, J., Bar-Ziv, R. H., Noireaux, V. Coarse-grained dynamics of protein synthesis in a cell-free system. Phys Rev Lett. 106 (4), 048104(2011).
  13. Daube, S. S., Arad, T., Bar-Ziv, R. Cell-free co-synthesis of protein nanoassemblies: tubes, rings, and doughnuts. Nano Lett. 7 (3), 638-641 (2007).
  14. Chen, X., et al. An immunoblot assay reveals that bacteriophage T4 thymidylate synthase and dihydrofolate reductase are not virion proteins. J Virol. 69 (4), 2119-2125 (1995).
  15. Sun, Z. Z., et al. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J Vis Exp. (79), e50762(2013).
  16. Shin, J. N. V. Efficient cell-free expression with the endogenous E. coli RNA polymerase and sigma factor 70. J Biol Eng. , (2010).
  17. Caschera, F., Noireaux, V. Preparation of amino acid mixtures for cell-free expression systems. Biotechniques. 58 (1), 40-43 (2015).
  18. Minton, A. P. How can biochemical reactions within cells differ from those in test tubes. J Cell Sci. 119, Pt 14 2863-2869 (2006).
  19. Minton, A. P. Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol. 10 (1), 34-39 (2000).
  20. Zimmerman, S. B., Minton, A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 22, 27-65 (1993).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

126 TXTL

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved