Method Article
このプロトコルでは、蛍光共鳴エネルギー移動し、蛍光寿命イメージングに基づく SNARE タンパク質の複合体形成の定量的可視化を可能にする新しいメソッドについて説明します。
可溶性Nエチルマレイミド感受性融合蛋白質 (NSF) 添付ファイル蛋白質受容体 (スネア) 蛋白質は、彼らは真核生物の細胞内膜融合を触媒膜が人身売買のためのキーです。SNARE タンパク質ファミリーは、約 36 の異なるメンバーで構成されています。特定の細胞内の輸送ルートは、特異性に貢献する 3 または 4 の SNARE タンパク質の特定のセットと膜輸送の忠実度によって触媒されます。ただし、SNARE タンパク質の精密な機能を勉強しては技術的に難しく、ほとんどスネア複数持っていると関数を重複とスネアが非常に豊富な機能的冗長ので。このプロトコルでは、生きた細胞の SNARE 複合体形成の可視化のための新しい方法を説明します。この手法は SNARE タンパク質の C 末端蛍光タンパク質を融合を表現することにし (FRET) による蛍光寿命イメージング (FLIM) を転送フェルスター共鳴エネルギーの相互作用を測定します。多成分の減衰モデルと蛍光寿命のヒストグラムをはめ込んでフレット FLIM は異なる小胞で SNARE 複合体形成の割合の半定量的評価を可能です。このプロトコルは SNARE 複合体形成膜、哺乳類細胞株および主な免疫細胞のエンドソーム コンパートメントを視覚化に正常に適用されているし、他の細胞内小器官でスネア関数の研究を容易に拡張することができます。動物・植物・真菌細胞。
膜の売買は、真核細胞、どこ膜小胞ドナー細胞器官から発芽し、移動し、ターゲット器官1,2ヒューズの中心的な機能です。ミトコンドリアを除くすべての膜融合手順は SNARE 蛋白質家族1,2のメンバーによって触媒されます。SNARE タンパク質ファミリーは哺乳類の細胞の約 36 メンバーと酵母2の約 20 のメンバーから成っています。SNARE 蛋白質領域を含める 1 つまたは 2 〜 52 残基長、ネイティブ構造化されていない、スネア モチーフと呼ばれます。SNARE タンパク質は C 末端の膜貫通ヘリックス1,2で膜にしばしば繋留します。スネアは、アルギニン (R) とグルタミン (Q) スネア1,2に複雑なスネアに貢献する中央残留に基づいて分類できます。膜融合は、一緒に 4 スネア モチーフを貢献し、ドナーとアクセプターの両方の膜1,2に分散されている 3 または 4 の同種スネアの相互作用によって駆動されます。SNARE 複合体は、1 つの R スネア モチーフと 3 Q スネア モチーフ (Qa、Qb、および Qc と呼ばれます) で構成されます。複雑な形成が始まるいわゆるトランスを形成のスネア モチーフの N 末端-スネア-複雑なcisと呼ばれるタイトな α ヘリカル コイルのバンドルを形成、C テルミニへ向かって -スネア-複雑な。複雑な単一スネアとの錯形成ドナーとアクセプタの膜を一緒にドラッグし、膜融合3に対するエネルギー障壁を克服します。
セル内の特定のトランスポート ルートに異なるスネア錯体を割り当てることは多くの場合技術的に難しきます。スネアは膜輸送の特異性に明確に貢献する、無差別、機能的冗長とその機能重複1,2。このため、遺伝子ノックアウト、RNA 干渉、支配的な陰性として水溶性のスネア フラグメントまたは遮断抗体の導入によって、スネアを対象化摂動実験頻繁で起因しない他の明確な表現型スネアは、2、4を補正します。スネアは複数のトランスポート ルート2でかかわることができるので、さらに上流の人身売買イベントから特定の膜融合手順を区別するために困難です。スネアの反応蛍光レポーター蛋白質、遺伝子融合を使用した顕微鏡手法による機能局在論の問題に苦しむこと: 彼らはしばしば複数の人身売買の手順、および (ii) を仲介として複数の器官にスネア (i) を検索彼らのローカライズは、SNARE 複合体形成に従事する機能を自動的に意味しません。最後に、SNARE 複合体は、免疫沈降実験のターゲットとして餌と他のスネア スネアのいずれかを使用してを使用して識別できますが、これは特定の細胞小器官または人身売買ルートにこれらの複合体の割り当てはできません。したがって、現在、核分解能でスネアの複合体を可視化する方法はありません。蛍光抗体法はスネアの相互作用を証明することができないが、共局在の有無のみを表示することができます、免疫沈降法のみを表示することができます全体のスネア相互作用細胞母集団しますが、細胞小器官を割り当てないどここれら相互作用が発生します。
これらの制限を克服するために、核解像度の生細胞内 SNARE 複合体の定量的可視化を可能にする手法は最近 Verboogenらによって開発されました。5このメソッドは C 末端の膜貫通ヘリックスを融合したスペクトル シフトの蛍光タンパク質を用いたスネアのペアの式に基づいています。Cisの形成と膜融合の完了の後の複雑な罠、これら膜貫通へリックスの C 末端の fluorophores が付いてすぐに互いに並置されています。Fluorophores が付いている、フェルスター距離内で (通常 < 5 nm)、赤いシフト アクセプター fluorophore5,6グリーン シフト供給の fluorophore からフレットで生じる。供給の fluorophore とドナーとアクセプター発光 (レシオ フレット) の比から測定することができます受容体 fluorophore の排出増の焼入れにおける結果を心配しないでください。しかし、レシオ メトリック 2 つの異なる分子間フレット難しいは異なる細胞内小器官と細胞7,8の間でドナーとアクセプターのスネアの蛍光クロストークとは異なるレベルのため。フレットは、励起と光子の放出時間である蛍光寿命から測定することができます。供給の fluorophore はそのエネルギーを解放できる場合、この競合により蛍光寿命の明白な短縮、フレットします。これは、FLIM7,8で測定できます。寿命蛍光寿命は、蛍光体の組み込みプロパティで、その濃度に敏感ではない 2 つの異なる分子間相互作用測定のフレットはレシオ メトリック フレットよりもずっと頑丈。また、フレットの効率はドナーとアクセプター フルオロ (本質的にステップ関数) の間の距離の 6 乗に反比例するので、フレットは近似による定量的、です。したがって、二重コンポーネント減衰モデルの記録によって、FLIM 蛍光寿命ヒストグラムをはめ込んでフレット FLIM は SNARE 複合体形成5従事スネア分子量の半定量的推定できます。
このフレット FLIM メソッドが Verboogenらによって使用された最近では、免疫システムの5の主樹状細胞の SNARE 複合体形成を視覚化。病原性刺激に遭遇、樹状細胞を再ルーティングこと、膜の特に Qa スネア変異シンタキシン 4 R スネア小胞膜蛋白質 (ヴァンプ) 3 の増加錯化を伴う売買を示した、細胞膜。この増加の SNARE 複合体形成は、インターロイキン 65などの炎症性サイトカインの分泌を分泌容量の増加を満たすために可能性が高い必要があります。このプロトコルは、フレット FLIM SNARE 複合体の可視化と半定量的測定のデータの取得に必要な実験の手順を説明します。それは、モノと bi 指数減衰機能で、スネアの相互作用を定量的な見積もりとして明白な蛍光寿命の結果全細胞の蛍光寿命ヒストグラムに合わせて方法を説明します。このプロトコルでは、例として広く使用されている HeLa 細胞ラインを使用が、メソッドは他の真核生物の細胞でスネア錯体の研究を容易に拡張することができます。
1. 顕微鏡試料の調製
2. FLIM データの記録
3。光子録音 FLIM 画像を変換
4. 蛍光寿命ヒストグラム全体セル FLIM の分析のためのフィッティング
注: この手順 (IRF の deconvoluted 継手) deconvoluted フィッティングが可能なソフトウェアが必要です。IRF のデコンボリューションなし蛍光性のヒストグラムの斜面をフィッティングは、同様に他のソフトウェアを行うことができます。
フレット FLIM でスネアの相互作用を測定するアッセイの原理は図 1に示します。同種の SNARE タンパク質の膜貫通へリックスの C 末端はスペクトル シフト蛍光蛋白質 (例えば、mCitrine および mCherry) のペアに融合しました。Cisの形成-互いに並列になってすぐにこれらの蛍光タンパク質の膜融合結果に複雑なスネアし、フレットします。図 2は、HeLa 細胞の SNARE タンパク質の蛍光標識を表現する代表的な共焦点画像を示しています。シンタキシンがはたす 4 mCitrine 構造 (ドナーのみ; ないフレット) と変異シンタキシン 3 両方 mCitrine に融合のみを発現する細胞の制御条件だけでなく、セルを表現している変異シンタキシン 4 mCitrine (供給の fluorophore) VAMP3-mCherry (アクセプタの fluorophore) とを示すタンデム (最大期待できるフレット) の mCherry。付属の蛍光寿命とモノラル指数関数的減衰関数 (図 3 a-B) と bi 指数関数的減衰機能 (各ピクセルの生涯ヒストグラムをフィッティングによって生成された FLIM イメージ図 3が示しています図 3-D).図 4 aは、顕微鏡のカバーガラスの後方散乱を用いて我々 のセットアップの IRF を示しています。図 4 b-E、セル全体と共に付随するフィット FLIM 分析の代表的な蛍光寿命ヒストグラム モノラル指数関数的減衰関数の曲線が表示されます。図 4 階は、顕著な反射ピークで顕微鏡のカバーガラスの表面に近すぎるイメージング実験の蛍光寿命ヒストグラムを示しています。図 4は、bi 指数関数的減衰関数と合う担当者と有効期間のヒストグラムを示しています。
図 1: フレットで SNARE 複合体を可視化するための理論的根拠のスキーム。(A) 神経わな (タンパク質データベース 3HD717) 胞結合膜タンパク質 (ヴァンプ) 2 の構造モデル (青;R)、変異シンタキシン 1 (赤;Qa-SNARE)、および SNAP25 (グリーン; 両方 Qb と Qc スネア モチーフが含まれている)。MCitrine (供給の fluorophore; タンパク質データベース 3DQ118) に変異シンタキシン 1 の膜貫通へリックスの C 末端を活用します。MCherry (アクセプタ fluorophore; タンパク質データベース 2H5Q19) に VAMP2 の膜貫通へリックスの C 末端を活用します。(B) 方式のスネアは、フレットの膜融合を仲介しました。Cisの形成による膜融合後の複雑なスネア、スネアはすぐに各フレットの結果の他に並置されています。この図の拡大版を表示するのにはここをクリックしてください。
図 2: 蛍光タンパク質を融合した SNARE タンパク質の発現します。最初の列: 516 に興奮している供給の fluorophore nm。2 列目: アクセプター分子蛍光、610 に興奮して nm。(A) ドナーの条件のみ。シンタキシンがはたす 4 mCitrine (供給の fluorophore; マージでは緑) を表現する HeLa 細胞の代表的な共焦点画像。受容体チャネル (2 列目) 蛍光クロストークを示しています。(B) のネガティブ コントロール (フレットない)。VAMP3 mCherry (アクセプタ fluorophore; マージでマゼンタ) と両方のシンタキシンがはたす 4-mCitrine を表現する HeLa 細胞の代表的な共焦点画像。(C) 肯定的な制御 (最大期待できるフレット)。変異シンタキシン 3 mCitrine mCherry タンデムを表現する HeLa 細胞の代表的な共焦点画像を構築します。MCitrine と mCherry の蛍光信号の信号は完全にオーバー ラップ、mCherry と比較してライソゾームの分解する mCitrine の低い抵抗のため可能性があります注 (ディスカッション セクションを参照)。BF: 明視野。スケール バー、20 μ m.この図の拡大版を表示するのにはここをクリックしてください。
図 3: SNARE 複合体形成の FLIM イメージ。図 2に示すように細胞の (A) 代表的な蛍光寿命画像。画像は、イメージ フローサイトメトリー標準 (.ics) PT32ICS ソフトウェアを使用する最初にピコ システム (.pt3) によって記録されたフォトン トレース変換によって生成されました。単一のピクセルは、画像 15 100% 強度、7 ピクセルビニング円形および変動調整アルゴリズム (マルカート) から処理付き TRI2 ソフトウェア12,13を使用して生成し、蛍光寿命を装着しました。色は、明白な蛍光寿命を示します。(B) FLIM 画像 (図 2に示すように) mCitrine 供給の fluorophore の蛍光強度と蛍光寿命画像 (A に示すパネル) が複雑な場所。フィジー ImageJ のカスタム マクロを使用して畳み込みを行った (材料の表を参照してください)。(C) 蛍光寿命とシンタキシンがはたす 4-mCitrine と VAMP3-mCherry の両方を表現する bi 指数関数的減衰曲線のフィッティングしますが、今からパネル A ・ B、HeLa 細胞の FLIM 画像 (; 条件を制御する固定の有効期間を参照してください 4.4 のステッププロトコル)。ピクセルの色を示す変異シンタキシン 4 の複合体の VAMP3 とF推定の分数 (式 3)。(D) パネル B と同じ bi 指数、フィット。フィジー ImageJ のカスタム マクロを使用して畳み込みを行った (材料の表を参照してください)。この図の拡大版を表示するのにはここをクリックしてください。
図 4: セル全体 FLIM 解析します。(A) のセットアップの機器応答関数 (IRF)。IRF は、(きれいなガラスの水の入った皿を顕微鏡を使用して) ガラス-水界面の後方散乱を用いて測定しました。(B-E)図 2と図 3に示すように細胞の寿命ヒストグラムをセル全体。画像内に存在すべての光子を集めた。曲線は、IRF で deconvoluted され、モノラル指数関数的減衰関数 (式 1) が装備。これらの細胞の蛍光寿命は 2.82 の得られた ns (パネル B; ドナーのみ唯一シンタキシンがはたす 4 mCitrine を発現する細胞) 2.09 ns (シンタキシンがはたす 4-mCitrine VAMP3 mCherry との共発現細胞; パネル C) と 2.08 ns (細胞変異シンタキシン 3-mCitrine mCherry タンデムを構築します。最大の期待できるフレット制御;パネル D)。解りますが、対数の y 軸のスケールを持つ今の同じグラフを表示します。パネル E で減衰曲線パネル B + のオーバーレイを表示します。蛍光寿命のヒストグラムの例を (F) は、顕微鏡のカバーガラスの表面に余りに近く記録されます。これは、結果、大きな反射ピーク (黄色の斜線部分が描かれている)。(G) パネル C、今有効期間で bi 指数関数的減衰曲線のフィッティングと同じ固定制御条件 (プロトコル 4.4 を参照)。(1)高速および低速(2)コンポーネントの振幅であった 14.42 0.01、0.99 (式 3) の複雑なFスネアの推定割合の結果します。この図の拡大版を表示するのにはここをクリックしてください。
の補足ファイル 1。関数ファイル FLIM_convoluted_IRF このファイルをダウンロードするここをクリックしてください。
の補足ファイル 2。関数ファイル FLIM_convoluted_IRF_biexp このファイルをダウンロードするここをクリックしてください。
このプロトコルは、フレット FLIM のスネア シンタキシンがはたす 4 とライブの HeLa 細胞における VAMP3 の相互作用の可視化の使用方法を示します。シンタキシンがはたす 4 は、主にそれが開口放出1,2,20,21を仲介する細胞膜で検索 Qa わな蛋白質です。VAMP3 は、エンドソーム コンパートメントをリサイクルで検索する主に説明されているし、膜1,2,20に関しても他のエンドソームに人身売買を仲介する R スネアです。ただし、フレット FLIM の試金は他の SNARE タンパク質を研究するために容易に適応することができます。唯一の条件はこれらのわなを含む C 末端の膜貫通ヘリックスところ1,2でほとんどの SNARE 蛋白質のためのケースであります。さらに、ここで説明されているプロトコルは、植物、酵母など真核細胞の種類で SNARE 複合体の可視化に適応することができます。このプロトコルでは供給の fluorophore の蛍光寿命の短縮をフレットの尺度として使用されます。補完的なアプローチとしてアクセプター分子蛍光の寿命を検討できる、鋭敏化の排出が明確な上昇の段階に原因が発生したその共鳴エネルギー移動明確な証拠を提供します。
現在、フレット FLIM 技術ライソゾーム コンパートメントでスネアの複合体を可視化することができるかもしれません。変異シンタキシン 3 mCitrine mCherry タンデム構造の mCherry 蛍光されることが多いより蓄積された mCitrine 信号が細胞で豊富であるに対しライソゾーム コンパートメントに対応可能性があります juxtanuclear 領域で周囲5。MCitrine と比較して mCherry のような juxtanuclear 蓄積は認めこれらの蛍光タンパク質を融合した同じ SNARE タンパク質の共発現5頃。リソソームは、非常に低い pH によって特徴付けられる (< 4) 蛋白質分解酵素の高活性。MCherry 蛍光 mCitrine 蛍光体と比較してライソゾームの分解のより高い抵抗によって原因は mCherry の juxtanuclear の蓄積です。MCherry の juxtanuclear の蓄積はまた細胞5の固定の際に発生する、mCitrine の pH 焼入れのためは。したがって、フレット FLIM 技術 juxtanuclear (ライソゾーム) 地域でフレットの量を過小評価してこれはリソソームのルーメン内での厳しい条件に耐える他の蛍光レポーター蛋白質を必要となります。
原則としてフレット FLIM は、複雑な5でスネアの端数の半定量的推定値を得ることができます。我々 はこのプロトコルで説明した、ようこの必要があります二重指数関数的減衰関数 (式 2) と蛍光寿命ヒストグラムのフィッティング複雑な (高速コンポーネントの振幅がスネアの割合に比例して式 3)。しかし、2 成分モデルでこのような継ぎ手は技術的に挑戦的です。複数の無料フィット パラメーター (2 つの蛍光寿命と 2 つの振幅) とともに継ぎ手パラメーターが互いに影響し、一生の間に小さなエラーは、振幅と副に影響、特に以来光子の非常に大きな数が必要です。逆。これらのフィットの問題を克服するために遅い成分の蛍光寿命をドナー唯一の条件 (すなわち、ないフレット; 現在 mCitrine のみ) の有効期間に固定できるし、タンデムの有効期間に高速コンポーネントの構築 (最大の期待できるフレット) を。しかし、これも解釈すべき注意を払って、蛍光寿命がこれらのコントロールの状態と同じにできない場合があります (自己消光、双極子の向き、ラットモデル変奏曲) 複数の理由のため乖離する可能性がため。近くに複数のスネアの錯体 (< 10 nm) することができます間隔依存したフレット、フレット「分子定規」として使用することができるのと同じ原理で結果がこの場合、不明瞭 SNARE 複合体の定量。また、定量的な見積もりは常に意味を持ちませんラベル付きスネア内因性 (ラベルなし) スネアと競うためです。結果として、mCherry ラベル スネアの発現レベルは、割合フレット5の主要な決定要因です。すべてのこれらの警告のためモノラル指数関数的減衰関数 (式 1) と蛍光寿命のヒストグラムに合うようにそれをお勧めします。有効期間の事前知識は必要ありませんし、結果の明白な平均蛍光寿命は、スネア錯5固体測定の利点があります。
それにもかかわらず、2 成分フィッティング モデルによる定量的フレット FLIM イメージングは強力な将来のアプリケーションを持つことが期待されます。染色体内の遺伝子のスネア エンコーディングは、CRISPR/CAS9 で、たとえば蛍光レポーター蛋白質と融合します。これは内因性のタンパク質のレベルとラベルのないわな、背景なし、内因性の SNARE タンパク質の蛍光標識の結果し、のフレット FLIM で SNARE 複合体画分の有意義な定量的評価により。内因性スネアの表現のレベルがかなり低く、与える蛍光信号が比較的低い、それは全体のセルを必要とする光子の数 1,000 のみ) FLIM の特に、光子の十分な数を得られることを期待です。また、これらフレット FLIM の測定はまた高い蛍光信号とより良い光子統計より敏感なアバランシェ フォト ダイオード検出器を実行できます。
著者が明らかに何もありません。
この仕事は科学研究 (NWO; Radboud 大学医療センター、人間科学フロンティアから、キャリア ・ デベロップメント賞、オランダの組織から引力プログラム 2013 ヒュパティアの交わりによって支えられました。ICI-024.002.009)、NWO (ALW ビディ 864.14.001) から開始許可欧州連合の第 7 フレームワーク プログラム (グラント契約番号 336479) の下で欧州研究会議 (ERC) から、ビディを付与します。
Name | Company | Catalog Number | Comments |
Plasmid DNA 'syntaxin 4-mCitrine' | Addgene | ID 92422 | Other SNAREs with fluorescent proteins fused to their C-terminal transmembrane helices can also be used. Instead of mCitrine-mCherry, other donor-acceptor pairs of spectrally separated fluorophores can also be used (e.g., CFP-YFP). |
Plasmid DNA 'VAMP3-mCherry' | Addgene | ID 92423 | Other SNAREs with fluorescent proteins fused to their C-terminal transmembrane helices can also be used. Instead of mCitrine-mCherry, other donor-acceptor pairs of spectrally separated fluorophores can also be used (e.g., CFP-YFP). |
Plasmid DNA 'syntaxin 3-mCitrine-mCherry' | Addgene | ID 92426 | Positive control for maximum achievable FRET. |
Hela cells | |||
35 mm glass bottom dishes | Willco Wells | HBST-3522 | Other live cell imaging chambers will work as a substitute |
Dulbecco's Modified Eagle Medium | Gibco, Life Technologies | 31966-021 | |
Fetal calf serum | Greiner Bio-one | 758093 | |
Antibiotic-antimycotic solution | Gibco, Life Technologies | 15240-062 | Pen/Strep will work as a substitute |
Live cell imaging medium | Thermo Fisher Scientific | A14291DJ | Any other live cell imaging solution will work, as long as fluorescence from the medium is prevented |
Leica SP8 confocal microscope with a 63x 1.20 NA water immersion objective | Leica | SP8 | Other confocal microscopes capable of time-domain FLIM can also be used |
Pulsed white light laser | Leica | SP8 | Other pulsed laser sources can also be used |
Time-Correlated Single Photon Counting (TCSPC) system | PicoQuant | PicoHarp 300 | |
PT32ICS conversion software | Available at the 'Software'-section of www.membranetrafficking.com | ||
data analysis software programme capable of deconvolution | Originlabs | OriginPro 2016 | |
Fiji ImageJ | |||
Custom-made Fiji ImageJ macro for convolution of FLIM image with Intensity | Fiji ImageJ | Available at the 'Software'-section of www.membranetrafficking.com | |
Bürker Haemocytometer | VWR | 630-1541 | |
HeLa cells | ATCC | ATCC CCL-2 | |
PBS | B Braun Melsungen AG | 362 3140 | |
EDTA 2 mM | Merck | 108417 | CAS: 60-00-4 |
15 mL tubes | Greiner Bio-one | 188271 | |
Trypan blue | Sigma Aldrich | 93595 | CAS: 72-57-1 |
NEON cell electroporation device | Thermo Fisher Scientific | MPK5000S |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved