JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、変更されたを使用して中枢性疲労のラットのモデルを紹介するプロトコルを提案複数プラットフォーム メソッド (MMPM)。

要約

この記事で紹介した修正中枢性疲労のモデルラット複数プラットフォーム メソッド (MMPM)。[複数のプラットフォーム] は、水タンク下部の狭いプラットフォームとして設計されました。モデルラットしたタンクに入れ、コントラストの設定空のコントロール グループ連続 21 日間、1 日あたり 14 時間 (18:00-8:00) プラットフォームに立っていた。モデリングの最後に、モデル グループのラットは明らかな疲労出現を示した。モデルを評価するためにいくつかの行動試験を行い、オープン フィールドを含むテスト (OFT) 高架プラス迷路 (EPM) テスト、および徹底的なスイミング (ES) テスト。結果、不安、空間認知障害、悪い筋肉のパフォーマンスやモデルラットにおける提示拒否したボランティア活動中枢性疲労の診断を確定します。中央の神経伝達物質の変化では、結果も検証されます。結論としては、正常に再現された中枢性疲労と病気の病態を明らかにするモデルでは、今後の研究が役立つことがあります。

概要

疲労は、1人の健康を脅かす主な要因のひとつです。過去数十年で様々 な研究は、疲労は末梢発生しますが、一元的に駆動、常に感情と認知の障害が伴うことを証明しています。イタリアの生理学者 A. Mosso は最初、中枢性疲労2単語を提案しました。それは一般に限られた自主的な活動と中枢神経系 (CNS)3のインパルスの伝達の機能障害による認知障害として定義されます。末梢筋疲労と比べると、中枢性疲労は、中枢神経系だけでなく、結果として感情/行動の障害は、うつ病、不安、認知障害、記憶喪失を含む変更を強調しています。1 つの研究は、多くの要因が、過度の身体活動と精神的ストレスは非常に不可欠な4、中枢性疲労を引き起こすことができることを示しています。病因としてトリプトファン キヌレニン経路仮説5のような理論説明特定の経路の変化しかし、綿密な研究がまだ中枢性疲労の中央周辺の相関関係を明らかにするため必要です。

中枢性疲労のメカニズムはまだ明らかでは、効果的な動物モデルはさらなる研究のためとても重要です。既存の疲労モデルは大抵トレッドミル6と重量ロード スイミング7、精神的な要因に少し関心を持ってのような過度の運動による。中枢性疲労の開発シミュレート、するためには、私たちのグループは、MMPM でラット モデルを開発しました。モデリング プロセス中にラットのまま長時間睡眠時間の一部を含む複数のプラットフォーム ボックスの狭いプラットフォームの上に立って。過度の運動モデルとは異なり、MMPM モデルは、中枢性疲労の複雑な病態を考慮した精神的な要因として部分的な睡眠の剥奪を使用します。

モデル評価不安ムードと自主的な活動を決定するために OFT と EPM のテストを使用します。ES テストを実行して、末梢筋のパフォーマンスを測定します。さらに、我々 はラットの脳を取るし、ドーパミン (DA) を検出/中央神経伝達物質の違いを観察する両方の hypothalamuses のセロトニン (5-HT) のコンテンツ。

以下に示すプロトコル モデル中枢性疲労による繰り返しの物理的な活動と人間の生活の一般的な条件を模倣、睡眠不足です。ただし、モデル期間を調整すると、それすること他の多くの分野でのような観察とストレスの睡眠の研究。将来的に研究、我々 はこのモデルが中枢神経系の変更と中枢性疲労の病態メカニズムを明らかにするため、周辺システムとの接続を発見に役立つことを願っています。

Access restricted. Please log in or start a trial to view this content.

プロトコル

すべての動物は、ガイドラインに従って中国の法律倫理的な使用や実験動物の世話によって維持されました。

1 前モデル準備

  1. 研究室の準備
    1. 実験前に、少なくとも 30 分間 UV ランプを実行します。
    2. 25 ± 3 ° C、相対湿度 30% 前後で研究室の温度を制御します。
    3. 6:00 光の演習を切り、18:00 12/12 h 明暗サイクルを確立するためにそれをオフにします。
  2. 複数のプラットフォーム ボックス構造
    1. 110 × 60 × 40 cm3のカバーなしの不透明なプラスチック タンクを構築します。
    2. 15 円形プラットフォームを修正 (h = 8 cm、d = 6.5 cm) タンクの底部には、どの整然と配布 3 行で 5 つの列。スペースを残して十分な各プラットフォーム間約 10 cm の列と行の間の 13 cm。
    3. タンクの側面の水の出口を設定して蛇口をインストールします。
    4. それに掛かっているフード ボックスとタンクの鉄金網カバーを作る。
  3. グループ化と住宅ラット
    注: 8 週齢, 体重約 200 210 g の Wistar 系雄ラットは実験で使用されます。ラットは、モデリング プロセスの間にグループに住んでいます。
    1. マーカー ペンとラットの尾根を数します。
    2. ラットの重量を量る、非常に軽いまたは重いものを除外し、モデルと制御グループにランダムに残りの部分を分けます。
    3. 優しくきれいなケージにラットを入れ、少なくとも 3 日間ラボに順応できるように。十分な水および食糧補給を提供します。

2. MMPM でモデリング

注: プロセスは、18:00 から開始、8:00 21 日以上、1 日あたりの 14 時間の合計は、次の日で終わります。干渉の要因を避けるためには、同一人物が同じ白衣を着用しながら、全体の実験を行う必要があります。10 ラットは実験で使用されます。

  1. 平らな面、例えば床にタンクを配置します。その後、ぬるま湯 (25 ± 3 ° C)、フラットのプラットフォームの下約 1 cm の約 7 cm でタンクを満たします。
  2. 1 日のタンクのすべてのラットの十分な食べ物や飲み物を準備します。フード ボックスに飼料と水を入れ、表紙にハングアップします。
    注: いくつかのスマートのラットはフード ボックスの残りの部分を学ぶ。もしそうなら、タンクに戻ってそれらを運転します。
  3. ケージのモデル群を取る、尾によってそれらをつかむし、タンクにそっと入れます。水の代わりに、水の恐怖をやる気にさせるプラットフォームのすべてのラットを起動します。すべてのラットが対照群のラットのまま十分な食べ物と水で元檻の中で、上に立つプラットフォームを取得するかどうかを確認します。
  4. タンクをカバーします。傷害を避けるためにラットを監視します。ラット プラットフォーム上に登って 1 時間以上水に滞在場合、タンクからそれを拾うし、テストから削除します。
  5. 14 時間後のモデルラットのタンクを取り出すし、ドライヤーで髪を乾かします。それはフェードする場合ラットの尾をマークし直す。元檻にラットを戻り、十分な食料と水を提供します。
  6. タンクの隅々 をフラッシュします。タンクの 1 つの側面を昇格し、下水の流出に蛇口を開きます。
  7. 75% エタノール スプレーでタンクを殺菌、UV ライトにそれを公開します。

3. モデルの評価: 行動テスト

注: すべてのテストは、行動のラボで実行されます。ノイズと余分な光されていない場合、テスト中に妨害を避けるため。できれば、同じ人を使用して、各テストを実施します。暗いコートと手袋が画像処理でグレー スケール認識するため必要です。OFT を実行最初のラットの行動で最も効果があり。

  1. しばしば
    1. それはワークステーションに正しく接続されているし、ボックスのすべての角をカバーを確認するオープン フィールド ボックスの上のレコーダーを確認してください。ボックスに影を排除するために照明を調整します。
    2. 元檻の中で行動の実験室にネズミを移動します。テストの前に少なくとも 1 時間を順応させます。
    3. きれいにし排泄物やにおいが以前の実験から左がないことを確認し、75% エタノールとボックスをサニタイズします。
    4. その裏でネズミをケージから取り外し、優しく、ボックスの中央の領域にそれを置きます。すぐにシュートをブロックしないようにボックスから腕を撤退します。
    5. ラットの番号を入力して録音を開始します。カウントし、飼育、登山など、ラットの垂直活動の頻度を記録します。
    6. 5 分後に録画を停止、アウト ボックスのネズミを取る、ケージに戻る。
    7. 3.1.3 - 3.1.6 すべてのラットがテストを完了するまでの手順を繰り返します。
  2. EPM
    1. OFT (ステップ 3.1.1 - 3.1.2) に関しては事前確認と馴化の手順に従います。
    2. その裏でネズミをケージから取り外し、2 本の腕の接合部に軽くそれを置きます。左の開いている腕に向かってラットを土地し、迅速に残すシュートをブロックしないようにします。
    3. ラットの番号を入力して録音を開始します。カウントし、異なる腕の入り口の頻度を記録します。ラットをテストで迷路を落とした場合、それを拾うし、迷路にそれを送り返します。データ分析のための詳細な情報を記録します。
    4. 5 分後に録画を停止、ラットを取る、ケージに戻る。
    5. 排泄物を削除し、元ラットの臭いを除去するために 75% エタノールで迷路を拭いてください。
    6. 3.2.2 - 3.2.5 すべてのラットがテストを完了するまでの手順を繰り返します。
  3. ES テスト
    1. 暖かい (25 ± 3 ° C) 水の 80 cm で水泳タンク (70 × 30 × 110 cm3) を記入します。
      メモ: タンク内にサーモスタットがある場合水の温度には 37 ° C 前後、ラットの体温に似ているが設定する必要があります。ない場合は、部屋の温度を一定に保つ設定。
    2. ピン各ラットのための負荷房し、その尾ルート優しくそれを結ぶ。負荷は、ラットの体重の 10% の重量を量る。
    3. 尻尾をラットをつかむし、スイミング タンクにそれを投げます。ラットの密談、または壁にしがみつく、一線を画すと水に戻ってそれらを駆動します。
    4. 開始時間時水と停止タイミングが使い果たされるときにネズミを投入する場合、10 以上の水の下に鼻、口と水から苦労する失敗としてことを s。
      注: 場合によっては、疲労や溺死突然発生します。必ず十分な実験者の記録し、同時に動物を保存します。
    5. 他の人を中断することがなく水の枯渇ラットを削除します。自分の髪を乾燥、その番号をマークし直すとケージに戻ってそれらを送信します。
    6. 1 つのグループが終了した後は、タンク内の水を変更します。すべてのラットが完了、スイミング タンクを空し、きれいエタノールと紫外線殺菌します。

4. モデルの評価: 中央神経伝達物質検出

  1. 意識まで 10% 抱水クロラール (3 mL/kg) の腹腔投与でラットを麻酔します。
  2. ネズミの首をはねます。
  3. 後内側の線に沿って縦切開を行う、両サイドに頭蓋を開き、脳を公開します。頭蓋を裏返し、脳を取り外し、脳アイス袋にします。
  4. 分離し、周囲の組織との明確な境界を持つ脳の基底部にダイヤモンドの形をした領域である視床下部を削除します。生殖不能の管に配置し、液体窒素で凍結します。-80 ° C の冷却装置ですべてのサンプルを格納します。
  5. 高速液体クロマトグラフィー (HPLC)8を使用して視床下部で DA と 5 HT のコンテンツを検出します。

Access restricted. Please log in or start a trial to view this content.

結果

MMPM を使用して中枢性疲労のモデルラットについて述べる。Wistar 系ラットを 24 は、コントロール グループと各グループの 12 のラットをモデル グループにランダムに分かれています。モデル装置は、水タンク下部 (図 1) に狭いプラットフォームとして設計されています。モデルラット 21 日 (図 2)、部分的な睡眠時間を含め...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

MMPM もともと睡眠剥奪9です。ラットに水槽に底面固定プラットフォームで起動されます。水の本能的な恐怖によって駆動される、ラットのままプラットフォームの上に立って、睡眠が発生しません。研究は、睡眠不足の別の時間は様々 なラットの行動および認識減損10、否定的な感情の11、中枢性疲労などの気分の変化をもたらすことを?...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者が明らかに何もありません。

謝辞

この作品は、北京の自然科学財団 (No.7162124)、北京大学中国語医学新 ao 財団によって支えられました。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
multiple platform sleep deprivation water tankCustomization,it is provided by the neuroimmunological laboratory of Beijing University of Chinese Medicine110cm x 60cm x 40cm. There are 15 plastic small platforms at the bottom. The small platform is 6.5cm in diameter and 8cm high
Wistar ratsBeijing Weitong Lihua Experimental Animal Technology Companylicense number SYXK (Beijing) 2016-0011Use 32 Wistar healthy male rats ,8 week old (200-210 g)
Agilent 1100LC high performance liquid chromatograph Agilent G1379A, G1311A, G1313A , G1316A  G1379A, G1311A type chromatographic pump, G1313A automatic sampler, G1316A column temperature box
DECADE II SDC electrochemical detectorDutch ANTEC companyglassy carbon electrode, Ag/AgCl reference electrode, workstations (Clarity CHS)
Biofuge Stratos high-speed refrigeration centrifugeHERAEUS
VCX130 ultrasonic fracturing instrumentSONICS
ACS-ZEAS electronic scalePhos technology development, Beijing.The weight of the weighing rats can be accurate to 0.1g.
Open Field BoxCustomization,it is provided by the neuroimmunological laboratory of Beijing University of Chinese Medicinewooden box of open field  100 cm by 100 cm x 40 cm, inside wall and bottom as the gray.The bottom is divided into 25 equal area squares, each of which is 20cm x 20cm, and the 16 grids along the outer wall are the external ones, and the other 9 grids are central.The camera is mounted above the median.
Elevated Plus-mazeBeijing zhongshi dechuang technology development co. LTD.The open arms and close  arms of the cross are composed of 30cm x 5cm x 15cm, and the central area is 5cm x 5cm, with a camera mounted above the center and 45cm high.
rat swimming bucket.Zhenhua biological instrument equipment co., LTD. Anhui,China.The volume of plastic drum is 70cm x 30cm x 110cm, which is used for swimming in rats.
ThermometerShiya instrument co., LTD., changzhou,China.Control water temperature
Small water pumpXincheng technology co., LTD., chengdu,China.Used for water tank and swimming behavior.
Ethovition3.0 behavioral software.Nuldus,NetherlandsMeasurement analysis of rat behavior videos.

参考文献

  1. Ishii, A., Tanaka, M., Yamano, E., Watanabe, Y. The neural substrates of physical fatigue sensation to evaluate ourselves: a magnetoencephalography study. Neuroscience. 261, 60-67 (2014).
  2. Dalsgaard, M. K., Secher, N. H. The Brain at Work: A Cerebral Metabolic Manifestation of Central Fatigue? Journal of Neuroscience Research. 85 (15), 3334-3339 (2007).
  3. Chaudhuri, A., Behan, P. O. Fatigue in neurological disorders. The Lancet. 363, 978-988 (2004).
  4. Baston, G. Exercise-induced central fatigue: a review of the literature with implications for dance science research. Journal of Dance Medicine & Science. 17 (2), 53-62 (2013).
  5. Yamashita, M., Yamamoto, T. Tryptophan and Kynurenic Acid May Produce an Amplified Effect in Central Fatigue Induced by Chronic Sleep Disorder. International Journal of Tryptophan Research. 7, 9-14 (2014).
  6. Lee, S. W., et al. The impact of duration of one bout treadmill exercise on cell proliferation and central fatigue in rats. Journal of Exercise Rehabilitation. 9 (5), 463-469 (2013).
  7. Su, kY., et al. Rutin, a flavonoid and principal component of saussurea involucrata, attenuates physical fatigue in a forced swimming mouse model. International Journal of Medical Sciences. 11 (5), 528-537 (2014).
  8. Hashemi, F., Laufer, R., Szegi, P., Csomor, V., Kal ász, H., Tekes, K. HPLC determination of brain biogenic amines following treatment with bispyridinium aldoxime K203. Acta Physiologica Hungarica. 101 (1), 40-46 (2014).
  9. Machado, R. B., Hipo'lide, D. C., Benedito-Silva, A. A., Tufik, S. Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Research. 1004 (1-2), 45-51 (2004).
  10. Alzoubi, K. H., Khabour, O. F., Tashtoush, N. H., AI-Azzam, S. I., Mhaidat, N. M. Evaluation of the Effect of Pentoxifylline on Sleep-Deprivation Induced Memory Impairment. Hippocampus. 23 (9), 812-819 (2013).
  11. Pires, G. N., Tufik, S., Andersen, M. L. Grooming analysis algorithm: Use in the relationship between sleep deprivation and anxiety-like behavior. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 41, 6-10 (2013).
  12. Yamashita, M., Yamamoto, T. Establishment of a rat model of central fatigue induced by chronic sleep disorder and excessive brain tryptophan. Japanese Journal of Cognitive Neuroscience. 15, 67-74 (2013).
  13. Arai, M., Yamazaki, M., Inoue, K., Fushiki, T. Effects of intracranial injection of transforming growth factor-beta relevant to central fatigue on the waking electroencephalogram of rats Comparison with effects of exercise. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 26 (2), 307-312 (2002).
  14. Han, C. X., et al. Distinct behavioral and brain changes after different durations of the modified multiple platform method on rats: An animal model of central fatigue. PloS One. 12 (5), e0176850(2017).
  15. Tang, X., Yang, L., Sanford, L. D. Individual variation in sleep and motor activity in rats. Behavioural Brain Research. 180 (1), 62-68 (2007).
  16. Stanford, S. C. The Open Field Test: reinventing the wheel. Journal of Psychopharmacology. 21 (2), 134-135 (2007).
  17. Ahn, S. H., et al. Basal anxiety during an open field test is correlated with individual differences in contextually conditioned fear in mice. Animal Cells and Systems. 17 (3), 154(2013).
  18. Costa, A. A., Morato, S., Roque, A. C., Tin ós, R. A computational model for exploratory activity of rats with different anxiety levels in elevated plus-maze. Journal of Neuroscience Methods. 236, 44-50 (2014).
  19. Liu, Z., Wu, Y., Liu, T., Li, R., Xie, M. Serotonin regulation in a rat model of exercise-induced chronic fatigue. Neuroscience. 349, 27-34 (2017).
  20. Foley, T. E., Fleshner, M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. NeuroMolecular Medicine. 10 (2), 67-80 (2008).
  21. Leite, L. H., Rodrigues, A. G., Soares, D. D., Marubayashi, U., Coimbra, C. C. Central fatigue induced by losartan involves brain serotonin and dopamine content. Medicine & Science in Sports & Exercise. 42 (8), 1469-1476 (2010).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

138 MMPM

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved