JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、共焦点顕微鏡とライブ イメージング技術に適したマウス胚から electroporated 脳脊髄スライス培養を生成する低コストかつ信頼性の高い方法を提供します。

要約

Gaba 作動性介在ニューロン (INs) は、ドライブの認知・行動神経ネットワークの重要なコンポーネントです。大脳皮質を設定する運命を移行で腹側に組み込みと外因性の終脳 ((MGE、CGE) 内側と尾節大物を含む) さまざまなレスポンスで背側骨皮質骨板に起源の場所から接線方向手がかり。異なる方法論は遺伝子特定の経路を操作し、適切に必要な細胞骨格の動的な変化を調整する方法を調査に長年にわたって開発されている移行。子宮内エレクトロポレーションは遺伝子発現抑制の効果を研究に広く使用されています。 または形態および最終的な位置への影響を評価しながら過剰発現の特定のサブタイプします。ただし、このアプローチは容易に放射状に移行する錐体細胞を変更するのには使用されますが、それはより技術的に困難な子犬の減少生存率を与えられる低降伏点が生成される子宮内保険エレクトロポレーションをターゲットとエレクトロポレーションは、e14.5、MGE 派生アドインの勉強は、慣習として前に行われています。別のアプローチで MGE 植、MGE へ簡単なアクセスを提供、遺伝子組み換えの INs のイメージングを容易にします。ただし、これらの植で INs は内因性指導手掛かりおよび視床入力を欠いている、人工マトリックスに移行します。これは、アドインが子宮内アプローチの技術的な課題を回避しながらより自然主義的な環境で移行できますメソッドを最適化するために私たちを促した。本稿で述べるマウス萌芽期の脳脊髄スライス培養を容易に追跡、イメージおよびに応えて自然のパスに沿って移行する遺伝子組み換えのプラグインを再構築後のex 子宮穿孔の組み合わせ内因性の手がかり。このアプローチは定量化カルビンディン抗体に固定組織の神経再建を使用して様々 な形態学的パラメーターの詳細な分析と同様、コマ撮りの共焦点レーザー顕微鏡を使用して移行での動的な側面のことができます。

概要

皮質 gaba 作動性介在ニューロン (INs) はその生化学的性質、生理学的性質と接続性に関して多様であり、彼らは成熟したネットワーク1,2,3 でさまざまな機能を仲介します。、4,5。皮質の INs のさまざまなサブタイプの仕様が広く調査1,2されている遺伝子のカスケードを堅く調整されます。大脳皮質 gaba 作動性 INs の大部分 (70%) 内側神経節隆起 (MGE)、腹側に位置する萌芽期の構造の前駆細胞に属し、皮質板1に到達する比較的長い距離の間で移行する必要があります。2,6皮質錐体細胞に移行放射状グリア細胞足場に沿って皮質板 (VZ) の心室の地帯から放射状、さまざまな組み込みが必要ですこのような足場に接続されていない、あるプラグインの接線方向の移動と。非皮質構造2,7,8から彼らを指導しながら皮質板へ移行するニューロンを誘致する外因性の手がかり。細胞周期を終了すると、アドインは、MGE から皮質板9,10に向かって接線方向の移動をトリガーする MGE の VZ 内で表現される化学療法反発手掛かりによって撃退されます。アドインの移行異なる反発手掛かり11の援助と線条体を避けるため、皮質板に達すると後、彼らは、接線方向から放射状移動モードに切り替えるし、錐体からキューに応答の一部の彼らの最終的な層流位置に到達セル12と他の細胞集団13。他の神経細胞の集団として、アドインの移行は、ニューロンの実際の動きを許可する様々 な動的形態変化を伴います。このいわゆる神経運動は 3 つの連続する手順の反復的なサイクルによって特徴付けられる: 主要なプロセス、核 (nucleokinesis) のアクティブな前向性モーション、後続プロセス14の撤回の伸長。移行ではドライブの分岐と向きと移行14,15 の速度を決定する、適切な方向に INs を導く主要なプロセスのアクティブな改造多数の組み込みと外因性手掛かりによって規制されて ,16

移行した皮質を規制する要因は、近年1,2,7,17,18,1920、広く研究されています。つながる神経発達障害、小児難治性てんかんや自閉症スペクトル障害1,2,21,などいくつかのこれらの分子の俳優の中断が仮定されています。22,23,24します。 したがって、生体外でそして生体内の様々 なアプローチの開発は以前に再検討された25として、動的な過程を研究する当社の能力が大幅に躍進する追求されてきた。体外メソッド、ボイデン室アッセイとストライプの選択法などを含む神経移行中に要件と特定の遺伝子または蛋白質の細胞の自律的影響を評価するための最速かつ最も再現性のある手段を提供します。他の影響を受けずに25 をを要因します。これらのアッセイは、ライブ イメージング8,26,27と組み合わせると特に役立ちます。これらの技術を簡単に e13.5 MGE から取得および8,28 を以前示すようにその後様々 なシグナル伝達経路と指導の手がかりを調べることができます、酵素と機械的解離によって分離.ただし、これらの試金は細胞遊走や生存25に影響を与える可能性がある神経細胞の挙動と細胞プロパティを変更するかもしれない三次元組織アーキテクチャの不在で人工細胞外マトリックスの場所を取る。これらの制限を回避するためにex vivo MGE 植は、速度と方向で14などのパラメーターと共に移行中に発生する動的形態学的変化を定量化するための代替ツールとして開発されています。 29。MGE 植を生成するは比較的簡単です、広くされている30を他の場所で説明されています。それは後者がオプション31マトリゲルと魅力的または冷淡なキュー25の存在下でコラーゲンの混合物、混合の大脳皮質細胞の膜上に MGE の小さな抽出物のめっきを伴います。MGE 植まばら標識細胞のイメージング、32,33 を示したように分岐、主要なプロセス中に骨格改造など、細胞内のプロセスの研究を簡素化する高解像度を可能にします。、34本研究で。MGE 植は、(例えば、Tielens201633を見なさい) 特定の薬理学的または遊走操作後例えば 2D 環境での移行時に骨格変化を評価するために正常に使用されています。.ただし、この方法で、人工マトリックス内にアドインを移行、これは動作と再現性実験結果の有意性を変更可能性があります。

対照的に、子宮内でエレクトロポレーションのネイティブ環境でプラグインの遺伝子操作を有効にし、迅速かつ効率的の制限を回避しながらゲインの影響と遺伝子機能の損失を評価するために広く使用されている方法です。高価な時間のかかるノックアウトとノックで戦略25,35。セル型特定プロモーターを使用し、MGE36を含む腹内側核の構造への電極を配置することで、子宮内でエレクトロポレーションを前駆細胞で偏ってすることができます。さらに、子宮内エレクトロポレーションにより実験的構造を 1-2 日内のタイムリーな表現のため構造式を用いたウイルスに必要な 7-10 日に比べてベクトル25。しかし、子宮内でエレクトロポレーションの前駆細胞の低降伏点傾向があります。確かに、背側心室ゾーンにある錐体細胞の前駆細胞を効率的に導入することができますが子宮内を使用して、MGE より腹側に位置する構造をターゲット エレクトロポレーションより技術的に難しいは特に小さな e13.5 に胚と胚性致死性さらに率が高い実験的利回り25が減少します。

体外に関連する技術的な制限のいくつかを回避するために MGE は実験と体内の子宮内でエレクトロポレーションを外植体、脊髄スライス培養前のヴィヴォが開発した8,37をされています。 38,39。脳切片スライス文化提供は安価で生成する動物モデル25よりも時間がかかるしながら体内を模倣の利点が条件します。確かに、これらの準備はプラグインの具体的な可視化と共に、MGE へ簡単にアクセスを許可するより生理的環境8に移行するアドインの特定の分子経路を調査する焦点エレクトロポレーションと組み合わせることができます。,39,40,41我々 はしたがって切片文化38ex 子宮穿孔と時間経過の共焦点レーザー顕微鏡と組み合わせて我々 のアプローチを最適化して、さらに形態学的および動的処理の発生評価。中に MGE アドインの接線方向の移動。この議定書は適応し、錐体細胞42,43の移行を検討するex 子宮または子宮内脳エレクトロポレーションと脊髄スライス培養を使用している人から最適化されたと皮質 INs36,,3944。具体的には、首をはねられマウス胚と、MGE は electroporated ex vivo実験プラスミドの脳室内注入後より効率的かつ正確に達成できるものよりも MGE 前駆細胞のターゲット子宮内エレクトロポレーション。脳が抽出されると全脳辺縁系を数日間培養することができますに分割、ので、連続追跡 transfected INs のイメージングします。このアプローチは、通常脳スライスあたりの 5-20 接線方向に移行する INs を容易に分離できるように十分にまばらなニューロン集団をラベリングしながら統計的有意性に到達するために必要な実験の繰り返しの数を最小限に抑えることをラベルします。復興と微細形態学的評価のため個々 のニューロン。さらに、切片文化確実に移行する MGE 植に比べて INs はローカル分泌ケモカインと求心系の視床からの入力などを含むより自然な環境に公開されます。この方法は方向性と主要なプロセスの分岐など細かい動的プロセスの評価を許可する十分な解剖学的な詳細を提供している間 transfected INs によって採択された渡り鳥のパスを定量化するに適してnucleokinesis と後続のプロセス撤回。

Access restricted. Please log in or start a trial to view this content.

プロトコル

すべての実験動物を含む Comité Institutionnel デもの Pratiques avec les チュー サント-ジュスティーヌ研究所 Animaux」(CIBPAR) で承認された、動物ケアの入門のカナダの評議会に従って実施されました。ケアと実験動物 (第 2 版) の使用。

ここで説明されているプロトコルは、日 (e) 13.5、同時にピークの CGE 派生 INs 生産45,46前に、とき MGE 派生アドインが積極的に生成される胚のエレクトロポレーション用に最適化されました。さらに、gaba 作動性インに向かってエレクトロポレーションをバイアス、アドイン (たとえば、最小限のエンハンサーとDlx5/6プロモーター)47で選択的に発現プロモーターを使用します。

1. 電気穿孔法と脊髄スライス培養用溶液の調製

  1. 無菌培養の培地の 125 mL を準備します。
    1. 正規ニューロン固有文化媒体の 125 mL を測定 (定式化の材料表を参照してください) 以前 UV 殺菌バイオ キャビネットの滅菌瓶 70% エタノールを散布します。無血清細胞固有のサプリメントは、1.75 mL 200 mM グルタミン (最終濃度 0.5 mM) の熱不活化馬血清無菌条件下で以前検体の 6.25 mL × 50 の 2.25 mL を追加します。ミックス徹底的に、生殖不能の円錐管に 15 mL の因数と 4 ° C で保存
      注意: 培地準備が 4 ° C で最大 3 週間保存することができます。
    2. 無菌条件下で 150 μ 因数に X の Botteinstein の N-2 定式化48の原液 100 を分割し、使用するまで-20 ° C で凍結します。
  2. 無菌人工髄液 (アプライド) の 1 リットルを準備します。
    1. 800 mL の 1 L ビーカーに蒸留水を測定します。ショ糖の 25.67 g、塩化ナトリウム (NaCl) の 5.08 g、炭酸水素ナトリウム (NaHCO3) の 2.18 g ブドウ糖、塩化カリウム (KCl) 0.19 g の 1.80 g 0.15 のグラムを追加一塩基無水リン酸ナトリウム (NaH2PO4)、1 M 在庫 CaCl 21 mL.2H2O と 1 M の 2 mL 在庫 MgSO4.7H2O. 攪拌室温で溶解します。蒸留水 1 L の総ボリュームに到達するを追加します。
    2. 0.22 μ m のフィルターを使用して、滅菌バイオ セーフティ キャビネットにおける滅菌ボトルにソリューションをフィルターし、4 ° C で 1 ヶ月保存します。
  3. 各実験の前にアプライドで 4% の agarose の新鮮なソリューションを準備します。
    1. 50 mL の生殖不能の円錐管の事前に準備されたアプライドの 25 mL を測定し、ポイントの低融点アガロースの 1 グラムを追加します。
    2. 45 熱電子レンジで s。こぼれる、沸騰を開始するときにすべての 3-4 秒を加熱を中断、圧力をそれを再び閉じて、agarose をミックスする手動で攪拌させるチューブを開きます。アガロース溶液が均一になるまでを繰り返します。42 ° C で凝固を避けるために実験の残りの中にアガロース溶液を維持します。
      注: より高い温度が脳組織を損傷します。

2. 注入のプラスミッドの準備

  1. ガラス製のインジェクション ピペットをプルします。
    1. マイクロ ピペット引き手適切なパラメーターを設定、設けられたスペースにはガラス毛細血管を保護し、フィラメントと中央に表示かどうかを確認します。
    2. プルダウン ボタンを押します。
    3. 先端の損傷を避けるためにさらに使用するまで熱の引き手およびボックスまたはきれいなペトリ皿の場所から新しく作ったマイクロインジェクション ピペットを慎重に取り外します。
  2. すべての計測器とキャビネットのバイオ セーフティのセットアップ必要この実験 (図 1A参照)、寛大 70% エタノールでバイオ セーフティ キャビネットにすべての楽器を散布し、楽器と 15 〜 20 分のための紫外光を用いた環境消毒します。
  3. 殺菌のステップ中に氷 (4 ° C) の上のプラスミドを解凍します。
  4. きれいな 1.5 mL 遠心チューブに原液 (4 μ g/μ L) からのプラスミッドの 10 μ L を測定します。ファストグリーン FCF の 0.01% を追加します。穏やかに混合、簡単にスピンし、氷に使用されるまで続けます。
    注: マキシ prep DNA は、エンドトキシン フリー マキシ準備キットを使用して製造元のプロトコルに従って準備されるべき。TE バッファーまたはヌクレアーゼ フリー DNA を可溶化することができます H2O および生殖不能の条件の下で実行する必要はありませんが、色素のソリューションが付いているプラスミッドの準備。マキシ prep からプラスミドを複数凍結融解サイクルを避けるために検体にする必要があります。検体プラスミド染付ないよりその 2 h 使用の前に混合されるべきそれ以上の使用のない凍結する必要があります.
  5. 滅菌後、ナノ インジェクターをとおり準備します。
    1. クリーン ボックスまたはペトリ皿と約 15 μ m の外径を達成する斜めの方法でピペットの先端をカットする小さなピンセットに格納されている事前に準備されたガラス製のインジェクション ピペットのいずれかを選択します。
      注: ここに与えられた外径ユーザーの我々 は、我々 の実験のアイデアを与えるに概数で、流体を許可しながら、脳を損傷することがなくプラスミド注射用スカルのピアスを容易にするために最適化されていますローディングおよび DNA のリリース。外径は、明視野顕微鏡下のミクロ スケール バーにあてるガラス マイクロインジェクション ピペットのカットを見ることによって測定できます。
    2. 注射器を使用して、その unpulled の終点 (すべての空気を吐き出す) から鉱物油で、ピペットを塗りつぶします。
    3. 製造元の指示に従い、ナノ インジェクターに充填ガラス マイクロ ピペットを挿入します。
    4. 空 2/3 rds ガラス マイクロ ピペット (空気のエントリを防ぐために十分な油を維持する)。
  6. 慎重に管内プラスミド/染料の解決の準備のマイクロ ピペットを挿入、プラスミド/色素溶液をガラス マイクロ ピペットを埋めます。

3 妊娠中の女性からマウス胚のコレクション

  1. 膣をプラグインするため、できれば毎日同じ時間 (午後の早い時間) に評価するために毎日の繁殖の女性を監視します。日 e0.5 は膣にプラグが観察される最初の日に対応します。
    注: ここで説明した実験は、野生型マウスで実施できます。ただし、MGE の識別を容易とすべての gaba 作動性を (または特定のサブ セット MGE 派生アドインなど) のラベルには、トランスジェニック動物使用できます (例: GAD67EGFP;Dlx5/6Cre Cre レポーター遺伝子など47,49と)。このような状況で注入実験プラスミドは transfected INs の可視化を (黄色) 非 transfected INs (緑) とを比較できるように、別の蛍光体 (例えばmCherryまたはTdTomato) を表現しなければなりません。
  2. 首脱臼によって胚日 e13.5 に女性を犠牲に。
    注: 犠牲の時に指定された麻酔薬の移行と生存の50,51で影響を与える可能性があり、避けるべきであります。
  3. とおり、帝王切開によって胚を収集します。
    1. 70% エタノール スプレー女性の腹部の寛大。滅菌ピンセットのペアで腹部の皮膚を引き上げて、もう一方の手で、腹部から皮膚をカットする滅菌手術用ハサミを使用してください。
    2. 滅菌ピンセットとはさみの 2 番目のペアで腹部の筋膜を引き上げ、子宮を慎重に回避しながらカットします。
    3. 滅菌ピンセットとはさみの 3 番目のペアを使用して、子宮の角を引き、骨盤腔内のそれらをカットします。60 mm の滅菌シャーレで、アミノ酸、ビタミン、無機塩類 (市販製品の材料の表を参照) を添加した神経系培養培地でいっぱいに切り裂かれた子宮角を配置します。
  4. 滅菌バイオ セーフティ キャビネット、胎盤から胎児を解剖し、斬首でヘッドを分離する高級ピンセット (それぞれの手に 1 つ) の 2 つのペアを使用します。
  5. 面取りカット 3 mL の滅菌プラスチック転送ピペットの先端を吸引ヘッドと転送凝固黒ワックス層し、同じ神経ベースでいっぱい新しい滅菌 60 mm のペトリ皿に補足として上記培。
    注: この手順は、(マウス毛、血液) は汚染物質の移動を最小限に抑えます。黒のワックスは、解剖時に頭を安定させるために使用されます。培地は、これらの手順の中に酸素を受け取る必要はありません。

4. 心室プラスミド注射と、MGE のEx Vivoエレクトロポレーション

注: 次の手順は、事前に準備されたバイオ セーフティ キャビネットの無菌条件下で実行する必要があります。

  1. 場所 60 mm のペトリ皿層黒ワックスであり、バイオ セーフティ キャビネットの双眼鏡の下で培を補足ニューラル ベースで首のない頭を含みます。
  2. 頭、右、左の手で高級ピンセットで直面している吻側部を安定させるし、右手で右側脳室にプラスミド/色素溶液の 1-2 μ L を注入するナノ インジェクターを使用します。
    注: 共発現実験をすることができます co electroporating がモル濃度で両方のプラスミドの混合により救助プラスミッドおよび shRNA 発現プラスミドを行います。
  3. Electroporate 注入された脳。
    1. 背側に配置され、頭に並列負電極と電極と対象とする、MGE 頭の腹側に向かって正の電極の間に頭を配置します。
    2. 電極に位置付けている、一度 500 ms、50 ms の 40 V の 4 正方形パルス パルス間間隔を提供します。
    3. 既にキャビネット、バイオ セーフティにおける配置ピンセットを使用して電極から任意の残留組織を削除します。
      注: これらのパラメーターは、実験に用いた遺伝子導入装置のために特別に最適化されています。遺伝子導入装置の異なる種類を使用している場合ユーザー最適化テストを前もって実行することをお勧めします。
    4. すべての残りの脳の 4.1 から 4.3 の手順を繰り返します。
      注: このプロトコルでは、1 つの脳のために必要な操作について説明しますが、収量が増えてそれぞれの脳 electroporating の前に順番に最大 4 脳を差し込むことが可能です。この戦略は、2 つまたは複数の異なるプラスミド注入される順番に (コントロールまたは実験プラスミドなど) (同腹子と比較できるように) 同じ実験中に特に有利であります。さらに、それは注入することが可能と electroporate 同時に電極を脳の表面に完全に平行に配置することで、収量を増やすには、脳の両側。

5. 脳の解剖と脊髄スライス培養

  1. まだ、バイオ セーフティ キャビネットの無菌環境で操作しながら頭蓋骨から脳を解剖します。
    1. 脳を慎重に回避しながらそれぞれの目に針を挿入することによって黒いワックスの層に頭を安定させます。
    2. 首の左側にある 2 番目の最後部から、頭蓋骨から皮膚を引き裂く高級ピンセットのペアを保持するのに高級ピンセットのペアを使用します。
    3. 片方の手でピンセットで頭を横方向に押しながら、脳幹のレベルで頭蓋骨を慎重にカットし、頭蓋骨を軽く引いて別のペアのもう一方の手でピンセットを使用します。各ピンセット, フロントに向かって、矢状面 (正中線) の頭蓋骨をカットし、頭骨の断片を解放するために横方向に切開します。
    4. 脳幹を持ち上げ、髄膜と脳神経を脳が頭蓋骨から完全になるまで慎重にカットします。
      注: 5.1 で説明したすべてのステップは、バイオ セーフティ キャビネットにおける厳格な無菌条件の下で行わなければなりません。
  2. 4% ポイント agarose の区分のための低融点で脳を埋め込みます。
    1. (42 ° C で液体を保持) 上記準備アガロース溶液で 35 mm のペトリ皿を埋めます。
    2. 以前カット転送ピペットを使用して agarose いっぱい料理に electroporated 脳をすばやく転送します。室温で料理をしてください。
    3. (沈没を防ぐため) によく途中で脳を保つために金属棒でアガロースをかき混ぜると吻尾側平面に脳を料理に並列に位置します。固める、脳損傷を避けるために agarose の起動時を攪拌を停止します。
    4. かみそりの刃を使用すると、脳の周り 1-2 ミリの余白を残して、長方形のブロックを形成するために、脳を取り巻くアガロースをカットします。脳の吻側部が手順については、後続の断面の向きを容易にブロックの前方限界に垂直になるようにします。
    5. それぞれの脳に繰り返します。
      注: それぞれの脳をさまざまな高さで設定中独立したアガロース ブロックを形成して時 (最大 3) 2 つ以上の脳を切断が可能です。
  3. Vibratome コロナ セクションとスライス培養。
    1. 100 X N-2 の雪解け 1 つの因数は、氷の上 (150 μ L) を補完し、検体無菌条件下で培地 15 mL を加えます。
    2. 6 ウェル培養プレートの各ウェルに培地 (の 1 つ X N2 の補足) 750 μ L を転送します。
    3. ツル首ピンセットで培地充填も各細胞文化挿入 (直径 30 mm、0.4 μ m の細孔径、PTFE) を配置します。
    4. 連続的に酸素のアプライドで vibratome お風呂を埋めます。お風呂の周囲の氷と 4 ° C に冷却または冷蔵 vibratome を使用します。
    5. ≫0.150 mm/s と 80 ヘルツに周波数 vibratome 速度を設定します。
    6. アガロース ブロック vibratome プラットフォーム、吻側端を下向きに、腹側を接着端のユーザーが直面しています。
    7. (4 ° C) で 250 μ m 厚のセクションを取得するコロナ セクションで脳をカットします。
    8. 滅菌へら MGE と慎重にセクション間の重複を回避しながら、単一の 30 mm 膜 1 つの動物からすべての脳のセクションを挿入する場所を含む 2-3 セクションを収集します。(前述の通り補った培地、750 μ L を含む) 6 ウェル培養プレートのウェル 1 個に挿入を配置します。また、各セクションは、500 μ l 添加した培養液でいっぱい 12 ウェル培養プレートの別々 の 13 mm 径膜に配置できます。培養液を各ウェルに推奨量では、水没することがなくメディアを栄養する脳セクションことができます。
      注: 5.3.6 5.3.7 で説明されている手順が実行されない完全な無菌条件の下で、vibratome の滅菌処理・ バイオ セーフティ キャビネットで使用しない限り。したがって、任意の汚染を避けるために注意深く手順を実施することが重要です。適切な保護具 (クリーン マスク、手術用手袋、白衣) に着用するべきすべての時間や身体の部分も覆われているような髪、顔、手、培養皿 (培養液の有無にかかわらず) に渡してください。また、手袋とへらの脳のセクションを収集するために使用頻繁に 70% エタノールをスプレーすることをお勧めします。
    9. 48 または 72 h の 60% 湿度と 5% CO2と 37 ° C で換気滅菌インキュベーターで培養プレートを配置します。
      注: これらのインキュベーション時間が MGE 派生アドインのタイムラプス イメージングと固定のスライスの共焦点イメージングそれぞれ最適化されました。最適なインキュベーション時間は、各実験的なデザインの事前テスト必要があります。さらに、選択した培養が 72 時間の場合と下、培養培地を変更する必要はありません。インキュベーション時間が長く、培養培地は 2-3 日毎変更必要があります。
    10. 目的の培養時間後 8 腔症 coverslip に関心のセクションを転送し、培地の 3-5 μ L を追加します。(37 ° C、湿度 60%、5% CO2) 環境室 coverslip が逆に接続されている場所は回転ディスク共焦点タイムラプス イメージング セッション セットアップするコンピューター援用取得ソフトウェアを装備しました。
      注: また、セクション 4% パラホルムアルデヒド (一晩で 4 ° C または室温で 2 時間)、その後 electroporated を共焦点の下の形態学的特徴の可視化のための異なった抗体と immunostained で修正されることができます。顕微鏡。EGFP と mCherry 任意のプロシージャを反汚すことがなく共焦点顕微鏡で目視できる、固定プロセスは、蛍光を減らすことができるので、信号を向上させる GFP および mCherry に対する免疫組織化学を行うお勧めの削減先頭または末尾のプロセスの小さい枝などの萌芽期ニューロンの細かい成分の検出。

Access restricted. Please log in or start a trial to view this content.

結果

このセクションで我々 は制御プラスミドや脊髄スライス培養続いて e13.5 マウス胚の MGE の興味の遺伝子をターゲット実験プラスミドのex 子宮穿孔の後得られた代表的な結果を提供します。37 ° C (タイムラプス イメージング) の 48 時間または 72 h (固定および免疫組織化学的分類) で培養 (スケマティック プロトコルの図 1 bを参照)。MGE 植?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

この記事で私たちは子宮 ex e13.5 にマウス MGE のエレクトロポレーションを実行するため、胎生期脳スライスの切片文化の生成のための信頼性の高い方法を提供します。体外メソッドでは、ボイデン室アッセイなどは比較的簡単に実行および異なる遺伝子やその他の要因を干渉することがなくタンパク質の特定の役割を評価するために使用することができます、彼らを排除するで?...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者が明らかに何もありません。ここの見解厚生労働大臣またはカナダ政府の見解を必ずしも表さない。

謝辞

この仕事は、サボイ財団と治療てんかん財団からの助成金により運営された、E.R (共焦点顕微鏡) と G.H (回転ディスク共焦点顕微鏡) 革新のためのカナダの財団から助成金装置によって。小胞体からのキャリア賞を受賞、フォン デ recherche du ケベック州健康(周波数-S;Clinician-scientist 賞) でなく、健康研究 (機構; カナダの機関から若手研究者賞を受賞)。周波数 S の上級学者はガーナL.E はチュー サント-ジュスティーヌ基礎ポスドク研修賞、周波数 S ポスドク研修賞、星の財団との提携で、サボイ財団から Steriade サボイ博士課程終了後の訓練賞の受信者です。このプロジェクトはカナダ脳研究基金、ル. に与えられる健康カナダの金融支援を通じて脳カナダによって実現されました

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Neurobasal MediumThermoFisher Scientific21103049Commercially available neuron-specific culture medium. Complete formulation available on this website: https://www.thermofisher.com/ca/en/home/technical-resources/media-formulation.251.html
B-27 serum-free supplementThermoFisher Scientific1750404450X Serum-free neuron specific supplement
15 mL sterile centrifuge tubesSarstedt62.554.002
Leibovitz's (1X) L-15 Medium (+ L-Glutamine)ThermoFisher Scientific11415064Commercially available neural-based culture medium supplemented with amino acids, vitamins and inorganic salts. Complete formulation available on the distributor's website 
L-GlutamineInvitrogen25030-081
Horse serum, heat inactivatedMillipore-SigmaH1138-500ML
Neurocell supplement N-2 100XWisent305-016Botteinstein's N-2 Formulation
VWR Square PETG Media Bottles 125 mLVWR89132-062
Class II Type A Biosafety CabinetNuaireNU-540
SucroseBioShopSUC700.1
Sodium ChlorideBioShopSOD001.1
Sodium bicarbonateThermoFisher ScientificS233-500
D+ glucoseMillipore-SigmaG7528-250G
Potassium ChlorideThermoFisher ScientificP217-500
Sodium phosphate monobasic anhydrousBioShopSPM400.500
Calcium chloride dihydrate ThermoFisher ScientificC79-500
Magnesium sulfate heptahydrateBiosShopMAG522
AgaroseBioShopAGA002.500
50 mL sterile centrifuge tubesSarstedt62.547.004
1.5 mL centrifuge tubesSarstedt72.690.001
P-97 Flaming/Brown Micropipette pullerSutter Instruments Co.Model P-97
0.4 mm I.D. x 75 mm Capillary TubeDrummond scientific1-000-800/12
EthanolVWRE193
5 mL syringeBecton Dickinson & Co309646
Mineral Oil (heavy)Rougier Pharma
WPI Swiss Tweezers #5World Precision Instruments50451111 cm, straight, 0.06x0.07mm tips, antimagnetic. You will need 2 of these.
WPI Swiss Tweezers #7World Precision Instruments50450411.5 cm, 0.18x0.2mm, curved tips
HTC TweezersWorld Precision Instruments50461711 cm, Straight, flat
Operating scissorsWorld Precision Instruments50122516 cm, Sharp/sharp, straight. You will need 3 of these.
Dressing ForcepsWorld Precision Instruments50121712.5 cm, straight, serrated
Iris ForcepsWorld Precision Instruments50447810.2 cm, full curve, serrated
DeBakey Tissue ForcepsWorld Precision Instruments50199615 cm, 45° angle, Delicate Jaw, 1.5mm wide
Fisherbran Microspatula with rounded endsFisherScientific21-401-5You will need 2 of these.
Nanoject II Auto-Nanoliter InjectorDrummond scientific3-000-204
TC Dish 60, StandardSarstedt83.390160-mm dish
Tissue culture dishSarstedt83.180035-mm dish
Black WaxFisherScientificS17432
Transfer pipettes Ultident170-CTB700-2123 mL, small bulb
Stereo MicroscopeLeica BiosystemsLeica M80In replacement to our stereomicroscope which has been discontinued by the manufacturer (StereoMaster from FisherScientific)
Electro Square PoratorBTX Harvard ApparatusECM 830
Tweezertrodes, Plattinum Plated, 3mmBTX Harvard Apparatus45-0487
25G 1 1/2Becton Dickinson & Co305127
Leica VT1000S Vibrating blade microtomeLeica BiosystemsVT1000S
GEM, Single edge razor bladeElectron Microscopy Sciences71952-10Remove the blunt end before inserting in the blade designated space of the vibratome
µ-Slide 8 wellIbidi80827Pack of 15
Millicell cell culture insertMillipore-SigmaPICM0RG5030 mm, hydrophilic PTFE, 0.4 µm pore, pack of 50. 
Leica DMi6000 microscopeLeica MicrosystemsN/A
Spinning disk confocal head Ultraview VoxPerkin ElmerN/A
Volocity 6.0 acquisition softwareImprovision/Perkin ElmerN/A
LiveCell Stage top incubation systemPathology devicesLC30030Provides Temperature, CO2 and humidity control. 
SP8 confocal microscopeLeica
mCherry-Lifeact-7Addgene54491Gift from Michael Davidson
Fast Green FCFMillipore-SigmaF7258-25G25G bottle, certified by the Biological Stain Commission

参考文献

  1. Rossignol, E. Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. , 649325(2011).
  2. Jiang, X., Lachance, M., Rossignol, E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Prog Brain Res. 226, 81-126 (2016).
  3. Ascoli, G. A., et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience. 9, 557-568 (2008).
  4. Klausberger, T., Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 321, 53-57 (2008).
  5. Somogyi, P., Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol. 562 (Pt 1), 9-26 (2005).
  6. Rudy, B., Fishell, G., Lee, S., Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol. 71 (1), 45-61 (2011).
  7. Marin, O. Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci. 38 (1), 2019-2029 (2013).
  8. Flames, N., et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron. 44 (2), 251-261 (2004).
  9. Zhu, Y., Li, H. -S., Zhou, L., Wu, J. Y., Rao, Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron. 23, 473-485 (1999).
  10. Zimmer, G., et al. Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons. Eur J Neurosci. 28 (1), 62-73 (2008).
  11. Nobrega-Pereira, S., et al. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron. 59 (5), 733-745 (2008).
  12. Lodato, S., et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron. 69 (4), 763-779 (2011).
  13. Elias, L. A., Turmaine, M., Parnavelas, J. G., Kriegstein, A. R. Connexin 43 mediates the tangential to radial migratory switch in ventrally derived cortical interneurons. J Neurosci. 30 (20), 7072-7077 (2010).
  14. Bellion, A., Baudoin, J. P., Alvarez, C., Bornens, M., Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: Forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci. 25 (24), 5691-5699 (2005).
  15. Marin, O., Valiente, M., Ge, X., Tsai, L. H. Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol. 2 (2), a001834(2010).
  16. Martini, F. J., Valdeolmillos, M. Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons. J Neurosci. 30 (25), 8660-8670 (2010).
  17. Wamsley, B., Fishell, G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci. , (2017).
  18. Chu, J., Anderson, S. A. Development of cortical interneurons. Neuropsychopharmacology. 40 (1), 16-23 (2015).
  19. Metin, C., Baudoin, J. P., Rakic, S., Parnavelas, J. G. Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J Neurosci. 23 (4), 894-900 (2006).
  20. Hernandez-Miranda, L. R., Parnavelas, J. G., Chiara, F. Molecules and mechanisms involved in the generation and migration of cortical interneurons. ASN Neuro. 2 (2), e00031(2010).
  21. Batista-Brito, R., et al. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron. 63 (4), 466-481 (2009).
  22. Marcorelles, P., et al. Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes. Acta Neuropathol. 120 (4), 503-535 (2010).
  23. McManus, M. F., Nasrallah, I. M., Pancoast, M. M., Wynshaw-Boris, A., Golden, J. A. Lis1 is necessary for normal non-radial migration of inhibitory interneurons. Am J Pathol. 165 (3), 775-784 (2004).
  24. Pancoast, M., Dobyns, W., Golden, J. A. Interneuron deficits in patients with the Miller-Dieker syndrome. Acta Neuropathol. 109 (4), 400-404 (2005).
  25. Azzarelli, R., Oleari, R., Lettieri, A., Andre, V., Cariboni, A. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex. Brain Sci. 7 (5), (2017).
  26. Wang, Z. Z., et al. Chemokine-like factor 1 promotes the migration of rat primary cortical neurons by the induction of actin polymerization. Neuroreport. 25 (15), 1221-1226 (2014).
  27. Zito, A., et al. Neuritin 1 promotes neuronal migration. Brain Structure and Function. 219 (1), 105-118 (2014).
  28. Rakic, S., et al. Cdk5 phosphorylation of ErbB4 is required for tangential migration of cortical interneurons. Cereb Cortex. 25 (4), 991-1003 (2015).
  29. van den Berghe, V., et al. Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1. Neuron. 77 (1), 70-82 (2013).
  30. Nery, F. C., et al. New methods for investigation of neuronal migration in embryonic brain explants. J Neurosci Methods. 239, 80-84 (2015).
  31. Vidaki, M., et al. Rac1-dependent cell cycle exit of MGE precursors and GABAergic interneuron migration to the cortex. Cereb Cortex. 22 (3), 680-692 (2012).
  32. Lysko, D. E., Putt, M., Golden, J. A. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules. J Neurosci. 34 (14), 4941-4962 (2014).
  33. Tielens, S., et al. Elongator controls cortical interneuron migration by regulating actomyosin dynamics. Cell Res. 26 (10), 1131-1148 (2016).
  34. Shinohara, R., et al. A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nat Neurosci. 15 (3), S371-372 373-380 (2012).
  35. LoTurco, J., Manent, J. B., Sidiqi, F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb Cortex. 19, Suppl 1. i120-i125 (2009).
  36. De Marco Garcia, N. V., Fishell, G. Subtype-selective electroporation of cortical interneurons. J Vis Exp. (90), e51518(2014).
  37. Tobet, S. A., Hanna, I. K., Schwarting, G. A. Migration of neurons containing gonadotropin releasing hormone (GnRH) in slices from embryonic nasal compartment and forebrain. Dev Brain Res. 97 (2), 287-292 (1997).
  38. Stoppini, L., Buchs, P. -A., Muller, D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 37, 173-182 (1991).
  39. Steinecke, A., Gampe, C., Valkova, C., Kaether, C., Bolz, J. Disrupted-in-Schizophrenia 1 (DISC1) is necessary for the correct migration of cortical interneurons. J Neurosci. 32 (2), 738-745 (2012).
  40. Friocourt, G., et al. Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neurosci. 27 (14), 3875-3883 (2007).
  41. Murthy, S., et al. Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun. 5, 5524(2014).
  42. Nichols, A. J., O'Dell, R. S., Powrozek, T. A., Olson, E. C. Ex utero electroporation and whole hemisphere explants: a simple experimental method for studies of early cortical development. J Vis Exp. (74), (2013).
  43. Pacary, E., Guillemot, F. Cerebral cortex electroporation to study projection neuron migration. Curr Protoc Neurosci. 77, 2.26.21-22.26.18 (2016).
  44. Yozu, M., Tabata, H., Nakajima, K. The caudal migratory stream: A novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci. 25 (31), 7268-7277 (2005).
  45. Butt, S. J., et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron. 59 (5), 722-732 (2008).
  46. Miyoshi, G., et al. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci. 30 (5), 1582-1594 (2010).
  47. Zerucha, T., et al. A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci. 20 (2), (2000).
  48. Bottenstein, J. E. Cell culture in the neurosciences. , Plenum Press. (1985).
  49. Wang, Y., et al. Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci. 30 (15), 5334-5345 (2010).
  50. Zheng, H., et al. Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology. 118 (3), 516-526 (2013).
  51. Zhao, T., et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 6, 26865(2016).
  52. Timpe, J. M., Wang, C. Z., Kim, J., Johnson, K. M. Alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor activation protects against phencyclidine-induced caspase-3 activity by activating voltage-gated calcium channels. J Neurosci Res. 92 (12), 1785-1791 (2014).
  53. Myers, A. K., Meechan, D. W., Adney, D. R., Tucker, E. S. Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex. J Neurosci. 34 (23), 7787-7801 (2014).
  54. Lopez-Bendito, G., et al. Chemokine signaling controls intracortical migration and final distribution of GABAergic interneurons. J Neurosci. 28 (7), 1613-1624 (2008).
  55. Close, J., et al. Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J Neurosci. 32 (49), 17690-17705 (2012).
  56. Anderson, S. A., et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron. 19 (1), 27-37 (1997).
  57. Stuhmer, T., Anderson, S. A., Ekker, M., Rubenstein, J. L. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development. 129 (1), 245-252 (2002).
  58. Godin, J. D., et al. p27(Kip1) is a microtubule-associated protein that promotes microtubule polymerization during neuron migration. Dev Cell. 23 (4), 729-744 (2012).
  59. Rossokhin, A. V., Sharonova, I. N., Bukanova, J. V., Kolbaev, S. N., Skrebitsky, V. G. Block of GABA(A) receptor ion channel by penicillin: Electrophysiological and modeling insights toward the mechanism. Mol Cell Neurosci. 63, 72-82 (2014).
  60. Lindquist, C. E., Dalziel, J. E., Cromer, B. A., Birnir, B. Penicillin blocks human alpha 1 beta 1 and alpha 1 beta 1 gamma 2S GABAA channels that open spontaneously. Eur J Pharmacol. 496 (1-3), 23-32 (2004).
  61. Bortone, D., Polleux, F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron. 62 (1), 53-71 (2009).
  62. Lin-Hendel, E. G., McManus, M. J., Wallace, D. C., Anderson, S. A., Golden, J. A. Differential mitochondrial requirements for radially and non-radially migrating cortical neurons: Implications for mitochondrial disorders. Cell Rep. 15 (2), 229-237 (2016).
  63. Lourenco, M. R., Garcez, P. P., Lent, R., Uziel, D. Temporal and spatial regulation of interneuron distribution in the developing cerebral cortex--an in vitro study. Neuroscience. 201, 357-365 (2012).
  64. Mahajani, S., et al. Lamin B1 levels modulate differentiation into neurons during embryonic corticogenesis. Sci Rep. 7 (1), 4897(2017).
  65. Liodis, P., et al. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci. 27 (12), 3078-3089 (2007).
  66. Close, J. L., et al. Single-cell profiling of an in vitro model of human interneuron development reveals temporal dynamics of cell type production and maturation. Neuron. 93 (5), e1035 1035-1048 (2017).
  67. Chen, Y. J., et al. Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Sci Rep. 7, 45656(2017).
  68. Michaud, J. L., et al. The genetic landscape of infantile spasms. Hum Mol Genet. 23 (18), 4846-4858 (2014).
  69. Allen, A. S., et al. De novo mutations in epileptic encephalopathies. Nature. 501 (7466), 217-221 (2013).
  70. Bery, A., Merot, Y., Retaux, S. Genes expressed in mouse cortical progenitors are enriched in Pax, Lhx, and Sox transcription factor putative binding sites. Brain Res. 1633, 37-51 (2016).
  71. Nelson, B. R., Hodge, R. D., Bedogni, F., Hevner, R. F. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J Neurosci. 33 (21), 9122-9139 (2013).
  72. Simon, R., et al. A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis. EMBO J. 31 (13), 2922-2936 (2012).
  73. Venkataramanappa, S., Simon, R., Britsch, S. Ex utero electroporation and organotypic slice culture of mouse hippocampal tissue. J Vis Exp. (97), (2015).
  74. Machacek, M., et al. Coordination of Rho GTPase activities during cell protrusion. Nature. 461 (7260), 99-103 (2009).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

134 gaba e13 5 RNA

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved