JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、短い所要時間、低コスト、高スループットの利点を有する、異性化症(PGT-A)の移植前遺伝子検査用半導体シーケンシング法を紹介する。

要約

染色体異性体は、胚発生停止、移植不全、または妊娠喪失につながる主な原因の1つであり、ヒト胚において十分に文書化されている。移植前遺伝子検査(PGT-A)は、胚の染色体異常を検出することによって生殖結果を有意に改善する遺伝子検査である。次世代シーケンシング(NGS)は、遺伝子解析のための高スループットと費用対効果の高いアプローチを提供し、PGT-Aの臨床的応用性を示しています。ここでは、胚における無気不変のスクリーニングのための迅速かつ低コストの半導体シーケンシングベースのNGS法を提示する。ワークフローの最初のステップは、生検胚標本の全ゲノム増幅(WGA)、続いてシーケンシングライブラリの構築、および半導体シーケンシングシステム上のシーケンシングです。一般に、PGT-A アプリケーションの場合、各チップに 24 個のサンプルをロードし、150 塩基対の平均読み取り長で 60-8000 万の読み取りを生成します。この方法は、テンプレートの増幅とシーケンシング ライブラリの強化を行うための洗練されたプロトコルを提供し、PGT-A検出を再現可能、高スループット、コスト効率、および時間節約にします。この半導体シーケンサーの稼働時間はわずか2~4時間で、サンプルの受け取りからレポートの発行までの所要時間を5日間に短縮します。これらすべての利点は、このアッセイを胚から染色体異性体を検出し、したがって、PGT-Aでの広い適用を容易にする理想的な方法を作る。

概要

補助生殖における転移のための正常な染色体コピー番号(ユーロイド)を持つ良好な生存胚を選択することは、妊娠の結果を改善するのに役立ちます。伝統的に、確立された形態グレーディングシステムは、その容易な可用性と非侵襲的な性質のために胚の評価のために広く使用されています。しかし、形態学的評価は、胚の質1および移植電位2に関する限られた情報しか提供できることが示されている。根本的な理由の一つは、胚の染色体組成を評価できないことである。

染色体異性体(染色体の異常コピー数)は、胚発生停止、移植不全または妊娠喪失につながる主な原因の一つである。無気腫の発生はヒト胚において十分に文書化されており、胚盤胞5では切断段階胚3、4および50%−60%で60%−70%を占めている。これは、ある程度、体外受精(IVF)治療の妊娠率の改善におけるボトルネックに寄与しており、これは約35%−40%6、7で維持されている。したがって、移植のためのユーロイド胚を選択することは、妊娠の結果を改善するために有益であると考えられている。この目的のために、移植前遺伝子検査(PGT-A)は、遺伝的アプローチを用いて胚の生存率を調べるためにさらに開発された。PGT-Aの重要な役割をサポートする無作為化対照試験およびコホート研究の数が増加している。PGT-Aの適用は流産率を減少させ、臨床妊娠率および移植率8、進行中の妊娠率および出生率9を増加させることを証明した。

歴史的に、PGT-Aには、その場所ハイブリダイゼーション(FISH)、比較ゲノムハイブリダイゼーション(CGH)、アレイ-CGH、単一ヌクレオチド多型(SNP)マイクロアレイなどの異なる方法が適用されてきました。これまでの研究では、FISHによる切断段階胚に対するPGT-Aは、59273array-CGHまたは59273array-CGHを用いた対応する胚盤胞の包括的な染色体スクリーニング(CCS)によって得られたものと一致しない結果を得るSNP-マイクロアレイ5927310.これらの不一致は、染色体モザイク、FISH技術アーティファクト、または開発11の間に染色体分離エラーの胚自己補正に起因しうる。アレイCGHやSNPマイクロアレイなどのアレイベースのPGT-Aに胚盤胞性栄養細胞(TE)生検を用いることは、胚10、12における染色体不均衡の同定に有効であると広く認識されている。近年、単細胞次世代シーケンシング(NGS)は、遺伝子解析のための高スループットと費用対効果の高いアプローチを提供し、PGT-A 13,14,15の臨床的応用性を示しています。現在利用可能な方法に代わる有望な方法です。

ここでは、ヒト胚における無気球体のスクリーニングのための高速、堅牢、低コストの半導体シーケンシングベースのNGS法を提示する。ワークフローの最初のステップは、生検胚標本の全ゲノム増幅(WGA)であり、単一細胞WGAキットを使用して、シーケンシングライブラリの構築、および半導体シーケンシングシステム上でのその後のシーケンシングを行います。

DNA鎖合成時に各デオキシリボヌクレオシド三リン酸から放出されるH+イオンを検出することにより、半導体元素によって捕捉された化学信号(pH変化)を転送し、デジタルデータを導くDNA配列情報にさらに解釈されます。高価な光学検出および複雑なシーケンシング反応のための条件を除去し、この簡単なシーケンシング化学は総試薬の費用を削減し、2-4時間16にシーケンシングの実行時間を短縮する。さらに重要なのは、製造元のパフォーマンス仕様に基づいて、半導体シーケンシングプラットフォームは、実行あたり最大15 GBのシーケンスデータ(ライブラリの品質に依存)を生成でき、他のシーケンサーよりも大幅に高い約 3−4 GBのデータ(2 x 75 bpの読み取り長)17を生成します。PGT-Aの臨床応用では、このプラットフォームは、最大8,000万回の読み取り17回、各サンプルの少なくとも100万回のユニークな読み取り値を生成するチップあたり24サンプルを達成することができます。読み取り深さは各サンプルが少なくとも0.05x全体のゲノムカバレッジを有することを保障できる。このプラットフォームの上記の利点は、理想的なスクリーニング方法を作り、したがって、PGT-A18でその広いアプリケーションを容易にします。

Access restricted. Please log in or start a trial to view this content.

プロトコル

香港合同中国大学-新地域東部クラスター臨床研究倫理委員会(参考文献:2010.432)により倫理的承認を受けました。研究ライセンスは、香港の人間生殖技術評議会(番号R3004)によって承認されました。

1. 全ゲノム増幅

  1. 開始前に、磁気ビーズ(材料の表)の体積を確認して、各サンプルに135μL(20%の過剰)がないことを確認してください。磁気ビーズを室温(RT)で少なくとも30分間保ち、各サンプルに70%のエタノールの720 μL(20%の過剰)を準備します。105 °Cで加熱された蓋と熱サイクラー(材料のテーブル)を装備します。
    注:新たに用意した70%エタノール(材料の表)は3日以内に使用する必要があります。
  2. サンプル調製
    注:ルーチンの練習では、胚盤胞の5~10の栄養形成細胞は、実践ガイドライン19に従って生検される。
    1. 単一の0.2 mLポリメラーゼ連鎖反応(PCR)チューブで1xリン酸緩衝生理食べ物(PBS)の2μLで生検を中断する。
    2. 簡単に液滴を収集するために3 sのためのミニ遠心分離機の管を回転させます。
  3. 細胞のリシスと抽出
    1. 細胞抽出バッファー(材料表)と抽出酵素希釈バッファー(材料の表)を氷、渦上で解凍し、使用前に3sのミニ遠心分離機で短時間スピンします。
    2. ステップ1.2.2から各チューブに3 μLの細胞抽出バッファーを追加します。
    3. 抽出酵素希釈バッファーと0.2 μL細胞抽出酵素(材料表)の4.8μLを加えて、各サンプルに5μL細胞リシスマスターミックスを調製します。ステップ1.3.2から各チューブによく混ぜてアリコートします。チューブを軽くひっくり返し、ミニ遠心分離機で3sの短時間スピンします。
      注: マスターミックスを追加する際に、セルサンプルを含む液体にチップを触れないでください。
    4. 熱サイクラーのステップ1.3.3から熱サイクラーの管を熱蓋とインキュベートする。次の設定でプログラムを実行します:75 °Cで10分、95°Cで4分、4 °Cで保持します。
  4. プリアンプ化
    1. 氷、渦上の前増幅バッファー(材料の表)を解凍し、使用前に3sのミニ遠心分離機で短時間回転させます。
    2. 4.8 μLのプリアンプ化バッファーと0.2 μLのプリアンプ化酵素(材料表)を加えて、各サンプルに5μLのプリアンプ化マスターミックスを調製します。ステップ1.3.4から各チューブによく混ぜてアリコートします。チューブを軽くひっくり返し、ミニ遠心分離機で3sの短時間スピンします。
      注: マスターミックスを追加する際に、DNAサンプルを含む液体にチップを触れないでください。
    3. 熱サイクラーでチューブを加熱した蓋でインキュベートします。流れる設定でプログラムを実行します:95 °Cで2分。12 サイクル 15 ° C, 15 °C で 50 s, 25 °C で 40 s, 35 ° C で 30 s, 40 s 65 °C で 40 s, 75 °C で 40 s;4 °Cで保持します。
  5. 増幅
    1. 氷、渦上の増幅バッファー(材料の表)を解凍し、使用前に3sのミニ遠心分離機で短時間スピンします。
    2. 増幅バッファーの25 μL、増幅酵素の0.8 μL(材料の表)、WGA(材料の表)のためのヌクレルフリー水の34.2 μLを加えることによって、各サンプルに60 μL増幅マスターミックスを調製します。ステップ1.4.3から各チューブによく混ぜてアリコートします。チューブを軽くひっくり返し、ミニ遠心分離機で3sの短時間スピンします。
    3. 熱サイクラーでチューブを加熱した蓋でインキュベートします。次の設定でプログラムを実行します: 95 °C で 2 分;95 °C で 15 s のための 14 サイクル, 65 °C で 1 分, 75 °C で 1 分;4 °Cで保持します。
  6. の精製WGA 製品
    1. 各 WGA 製品をステップ 1.5.3 から新しい 1.5 mL チューブに転送します。各チューブに112.5 μLの磁気ビーズを追加します。渦と5分間RTでインキュベートします。
      注:使用前に磁気ビーズを完全に混ぜます。
    2. 上清が透明になるまで3分間、チューブを磁気スタンド(材料のテーブル)の上に置きます。ビーズを邪魔することなく、すべての上清を廃棄します。
    3. 各チューブに70%エタノールの300 μLを追加します。各チューブを180°回転させて、ビーズがエタノールを通り抜け、元の位置に戻るようにします。ビーズがビーズを邪魔することなく落ち着いた後、すべての上清を廃棄します。この手順を 1 回繰り返します。
      メモ:チューブを水平に回転させながら、チューブを磁気スタンドに置いてください。
    4. 3 s. 残留上清が明確になるまで、チューブを磁気スタンドに置きます。ビーズを邪魔することなく、残留上清をすべて廃棄します。RTでビーズを約3分間乾燥させます。
    5. 磁気スタンドからチューブを取り外し、低トリスEDTA(TE)バッファー(材料表)の35μLを加えて乾燥ビーズを再懸濁させます。RTで5分間インキュベートします。
    6. 上清が透明になるまで、チューブを磁気スタンドに3分間置きます。ビーズを邪魔することなく、浸透したDNAを含むすべての上清を新しい1.5 mLチューブに移します。

2. WGA製品の品質管理

  1. WGA製品の1μLを開始材料として使用して、製造元のマニュアルに従って、フッ素計アッセイ(材料の表)によってステップ1.6.6から各精製WGA製品を定量します。
    注:WGA製品の受け入れ濃度は≥10 ng/μLです。このしきい値を下回る製品は、次の手順に進むことはお勧めしません。

3. WGA製品の断片化

  1. 開始前に、ドライブロックヒーターを37°Cに予熱します。各サンプルに対して6 μL(20%の過剰)0.5M EDTAを調調します。濃度に基づいて、ステップ1.6.6から新しい0.2 mL PCRチューブに各精製WGA製品からのDNAのアリコート300 ngを、各チューブにヌクレアーゼフリー水で16 μLに体積をもたらします。
  2. 断片化
    1. dsDNA断片化反応バッファー(材料表)の2μLと2μLのdsDNA断片化酵素(材料表)を添加して、各試料に対して4 μL二本鎖DNA(dsDNA)断片化反応ミックスを調製する。ステップ3.1から各チューブによく混ぜてアリコートします。渦と3 s.のミニ遠心分離機で短時間スピンし、加熱された蓋を持つサーマルサイクラーで37°Cで25分間チューブをインキュベートします。
    2. 各チューブに直ちに0.5 M EDTAの5 μLを追加します。渦でよく混ぜ、3sのミニ遠心分離機で簡単に回転させます。
  3. 精製と再サスペンション
    1. ステップ 3.2.2 から新しい 1.5 mL チューブに各製品を転送します。各チューブに37.5 μLの磁気ビーズを追加します。頂点で混合し、RTで5分間インキュベートします。
    2. ステップ 1.6.2 からステップ 1.6.4 まで説明されているように製品を浄化します。
    3. ステップ1.6.5および1.6.6に記載されているように、各精製製品を低TEバッファーの32 μLを追加して溶出します。

4. 図書館建設

  1. ブラント-endrペアリング、サイズの選択と精製
    1. 核リースフリー水の9.5 μL、5倍のエンド修復バッファーの10 μLを加えることによって、各サンプルに20 μLの鈍エンド修復ミックスを準備します(ステップ3.3.3から材料チューブの表。渦と3sのためのミニ遠心分離機で短時間回転します。
    2. ステップ4.1.1から各チューブに50 μLの磁気ビーズを追加します。渦と5分間RTでインキュベートします。
      注:使用前に磁気ビーズを完全に混ぜます。
    3. 上清が透明になるまで、各チューブを磁気スタンドに3分間置きます。すべての上清を新しい1.5 mLチューブに移し、それぞれに25μLの磁気ビーズを加えます。転移した上清でチューブを渦にし、RTで5分間インキュベートします。
    4. ステップ 1.6.2 からステップ 1.6.4 まで説明されているように、インキュベートされたチューブ内の製品を浄化します。
    5. ステップ1.6.5および1.6.6に記載されているように、各精製製品を低TEバッファーの32 μLを追加して溶出します。
      注: これは安全なストップ ポイントです。この工程からの精製されたDNAは、24時間以下で4°Cで安定しています。
  2. アダプターlイゲーションとp排尿
    1. 10 μL の核リースフリー水、10x リガーゼ バッファーの 5 μL(材料表)、P1 アダプター (材料の表)、および 1 μL の DNA リガーゼ (材料表) を加えて、各サンプルに 17 μL アダプターライゲーション ミックスを準備します。5sの渦でよく混ぜ、15sのミニ遠心分離機でスピンし、ステップ4.1.5から各チューブにアリコート。
    2. サンプルシート(補足ファイル:アダプターライゲーション用サンプルシート)に従って、ステップ4.2.1から各チューブにアダプタ(材料表)の1 μLを追加します。渦と短時間3秒のミニ遠心分離機でスピンし、RT(20−25°C)でチューブを20分間インキュベートします。
    3. ステップ4.2.2から各チューブに75 μLの磁気ビーズを追加します。頂点で混合し、RTで5分間インキュベートします。次に、ステップ 1.6.2 からステップ 1.6.4 まで説明されているように製品を精製します。
    4. ステップ1.6.5および1.6.6で説明されているように、各精製製品を15 μLの低TEバッファーを追加して溶出します。浸透したDNAを含むすべての上清を新しい0.2 mL 8チューブストリップに移します。
      注: これは安全なストップ ポイントです。この工程からの精製されたDNAは、24時間以下で4°Cで安定しています。
  3. 増幅・精製
    1. スーパーミックス(材料表)の47.5μLとプライマーミックス(材料の表)の2.5 μLを加えることによって、各サンプルに50 μL増幅マスターミックスを準備します。渦でよく混ぜ、ミニ遠心分離機で簡単にスピンし、ステップ4.2.4から0.2 mL 8チューブストリップにアリコート。
    2. 30 s用のストリップを渦にし、3 s.熱サイクラーのストリップを加熱された蓋でインキュベートするミニ遠心分離機で短時間回転させます。次の設定でプログラムを実行します: 72 °C で 20 分;95 °Cで5分;95 °C で 15 s の 10 サイクル、 62 °C で 15 s、70 °C で 1 分;70 °Cで5分;4 °Cで保持します。
    3. ステップ 4.3.2 から新しい 1.5 mL チューブに各製品を転送します。各チューブに97.5 μLの磁気ビーズを追加します。渦で混ぜ、RTで5分間インキュベートします。
    4. ステップ 1.6.2 からステップ 1.6.4 まで説明されているように製品を浄化します。
    5. ステップ1.6.5および1.6.6に記載されているように、各精製製品を25 μLの低TEバッファーを追加して溶出します。

5. DNAライブラリーの品質管理と希釈

  1. 製造元のマニュアルに従って、2 μLのDNAライブラリーを開始材料として使用して、フッ素計アッセイによってステップ4.3.5から各調製DNAライブラリーを定量します。
  2. DNAライブラリーの受け入れられた濃度は≥0.5 ng/μLであり、陽性対照(材料表)の濃度は≤15 ng/μLである。陽性制御の濃度が15 ng/μLからあまりにも多く変化する場合は、濃度が15ng/μLに近づくまで正対照の定量を繰り返します。ライブラリの濃度が 0.5 ng/μL 未満の場合は、断片化から再開します (セクション 3)。
    注: DNA ライブラリーを定量する前に、正のコントロールの濃度が受け入れられた値に達していることを確認してください。
  3. ヌクレアーゼフリー水を加えて各図書館を100pmolに希釈します。ヌクレアーゼフリー水のn μLに1 μLのライブラリーを追加します。以下の式を使用してnを計算します。
    figure-protocol-6803
    ここでQは、フッ素計アッセイによって測定された各ライブラリーの濃度であり、Cは、蛍光計アッセイによって測定された陽性対照の濃度である。

6. シーケンス

  1. 開始前に、各サンプルに対して1M NaOHの48 μL(20%の過剰)と1つのヌクレルスフリー1.5 mLチューブを調製します。マスターミックスPCRバッファ(材料表)(体積2000μL)をRTで解凍し、球粒子(材料の表)をRTに持ち込みます。
  2. ライブラリ プーリング
    1. 渦はステップ5.3から各希釈されたライブラリを、毎回3sのミニ遠心分離機で4倍に簡単に回転させます。各ライブラリの5 μLを取り、ヌクレアーゼフリーの1.5 mLチューブにプールします。混合ライブラリを渦にし、3sのミニ遠心分離機で簡単に回転します。
  3. エマルジョンシステムを用したエマルジョンPCR
    1. 2つの新しい回収管(材料の表)に壊れる解決の150 μLを加える。新しいリカバリチューブ、リカバリルータ、増幅プレートを取り付けます。
    2. オイルボトル(材料のテーブル)を3回反転して混ぜます。オイルと回収液(材料の表)の両方が少なくとも2/3がいっぱいであることを確認します。
    3. 30sのマスターミックスPCRバッファを渦にし、3 s.Vortex球粒子と混合ライブラリをステップ6.2.1から1分間、ミニ遠心分離機で短時間スピンし、3sのミニ遠心分離機で短時間スピンします。
    4. 2400 μL のライゲーションミックスを、ステップ 6.3.3 から 172 μL、混合ライブラリーの 8 μL をステップ 6.3.3、酵素ミックスの 120 μL(材料の表)、および 2000 μL マスターミックス PCR バッファーを含むチューブに 100 μL の球体粒子を加えて調製します。
    5. ピペットを 800 μL に設定し、ステップ 6.3.4 からリゲーション ミックスをサンプル ポートを介して反応フィルター (材料の表)にロードします。1000Pピペットを使用して、反応フィルターに200μLの反応油を追加します。
    6. プログラムプロトン:イオンPI Hi-Q OT2 200キットを選択し、[アシスト]ボタンを選択して、モニタの指示に従ってデバイスが正しく設定されていることを確認します。次に、[次へ]をクリックしてプログラムを開始します。
  4. 自動エンリッチメントシステムによるエンリッチメント
    1. エマルジョン PCR プログラムが完了したら、[次へ]をクリックし、[最終スピン]をクリックして 10 分間スピンします。[ふたを開く]をクリックした後、2 つの回復チューブを取り出します。
    2. 各チューブに100μLが残るまで、2本の回収管から上清を廃棄し、それに応じてラベルを付けます。溶液をよく混ぜ、新しい1.5 mLチューブに移します。
    3. 各回収管に200μLのヌクレアーゼフリー水を加え、ピペで数回上下に洗浄し、ステップ6.4.2で1.5 mLチューブにすべての溶液を移します。洗浄手順を1回繰り返します。
    4. 回収管の1つに200μLのヌクレアーゼフリー水を加え、上下に数回ピペッティングして洗浄します。すべての溶液を他の回収管に移し、ピペを数回上下に動かして洗います。次に、ステップ6.4.3からすべての溶液を同じ1.5 mLチューブに移します。渦は1.5 mLチューブを30s、遠心分離機は15,500 x gで8分間です。
      注: このステップのエマルジョン PCR 製品の最終的な総体積は、約 1200 μL である必要があります。
    5. チューブ内の上清を廃棄し、エマルジョンPCR製品の20 μLを保持します。チューブに80 μLの再懸濁液(材料の表)を追加します。上下にピペッティングしてミックスします。
    6. ポリエチレングリコールソルビタン単一ラウレート溶液(材料表)の280 μLと1M NaOHの40 μLを加えて、各チップに対して320μLの溶融溶液を調製します。
      注:1 M NaOHは4°Cで保存するか、または新鮮に調製する必要があります。使用前の渦。
    7. 30s用のC1ビーズ(材料の表)を含むチューブを渦。新しい1.5 mLチューブにC1ビーズの100 μLを取ります。1.5 mLチューブを磁気スタンドの上に2分間置き、ビーズを邪魔することなくビーズが落ち着いた後にすべての上清を捨てます。
    8. ステップ6.4.7からチューブに洗浄液C1(材料のテーブル)の1mLを追加します。30 s. RTで2分間磁気スタンドにチューブを置きます。ビーズ捕捉液(材料の表)の130 μLを追加してビーズを再懸濁します。
    9. エンリッチメントシステム(ES)セットアップ
      1. ステップ6.4.5からサンプル(100 μLエマルションPCR産物)、ステップ6.4.8から洗浄ビーズ(130 μL)、ES洗浄液(300μL)(材料の表)、ステップ6.4.6からメルトオフ溶液(300 μL)を8チューブストリップにロードします。レイアウトの順序は、サンプル(チューブ1)、洗浄ビーズ(チューブ2)、ES洗浄液(チューブ3、4、5)、および溶融溶液(チューブ7)です。チューブ6と8は空にしておきます。
      2. ステップ 6.4.9.1 の 8 チューブ ストリップを ES に配置します。ピペットチップと新しい0.2 mLチューブを取り付け、プログラムを開始します。
        注: ピペッティングが正常に動作することを確認します。
    10. 濃縮が完了したら、球の粒子を洗浄します。
      1. ステップ6.4.9.2から0.2 mLチューブを15,500 x gで5分間遠心分離します。上清を廃棄し、濃縮物の10μLを保ちます。管に200 μLのヌクレルスフリー水を加えます。渦で混ぜる。
      2. 遠心分離管から15,500 x gで5分間。上清を廃棄し、濃縮物の10μLを保ちます。90 μL のヌクレアーゼフリー水をチューブに加えます。渦で混ぜる。
  5. テンプレートの準備
    1. 正のコントロールを渦にし、短時間スピンします。100 μL テンプレート(ステップ 6.4.10.2 からの濃縮製品)に 5 μL の正のコントロールを追加します。渦と遠心分離機 15,500 x gで 5 分.上清を捨て、テンプレートの10 μLを保持します。
    2. ステップ6.5.1から20 μLのシーケンシングプライマー(材料表)と15μLのアニーリングバッファー(材料表)をテンプレートチューブに追加します。チューブを渦にし、3sのミニ遠心分離機で短時間回転させます。
    3. 熱サイクラーのステップ6.5.2から熱サイクラーの管を熱蓋とインキュベートする。次の設定でプログラムを実行します:95°Cで2分、37°Cで2分、4 °Cで保持します。
    4. ステップ6.5.3からチューブに10 μLのローディングバッファ(材料の表)を追加します。上下にピペッティングしてミックスします。
  6. シーケンサーの初期化
    1. 窒素ガスのタンク圧力(総圧力≥500 psi、出力圧力≥10 psi、最適な20-30 psi)を確認してください。C1およびC2チューブ(材料の表)にトップアップ100 mL脱イオン水(18.2 MΩ)を、シーケンサー上の対応するC1およびC2位置に取り付けます。
    2. W1(1M NaOHの32 μL)およびW3(W3バッファー[材料の表])の40-50 mL)溶液を準備します。1920 mLの脱イオン水(18.2MΩ)、W2バッファー(材料表)のボトル1本、1M NaOHの8−12 μLを加えてW2溶液を調べ、4~8回反転して混合します。
      注:水質は地質学的に異なるため、必要に応じて1M NaOHの体積を調整してください。W2の開始pHは5.9−6.1で、調整後の最適範囲は7.4−7.6です。新しい試薬チューブを交換して取り付け、最近使用したチップを洗浄に使用します。
    3. シーケンシングサプリメントキット(材料の表)から4つの新しい空チューブを準備します。4 つのチューブに dGTP、dCTP、dATP、および dTTP というラベルを付け、対応するチューブに 70 μL の dGTP、dCTP、または dTTP (材料の表)を追加します (つまり、dGTP などの標識のあるチューブに 70 μL dGTP)。使用前にチューブを渦にします。シーケンサー(材料の表)に指定された対応する位置にチューブを取り付けます。
  7. チップウォッシュ
    1. チップの積み込み井戸に100μLのイソプロパノールを注入して、チップ(材料のテーブル)を1回洗います。追い出された液体を反対側の井戸から取り除きます。
    2. チップの積み込み井戸に100μLのヌクレルスフリー水を注入して、チップを2回洗浄します。追い出された液体を反対側の井戸から取り除きます。
    3. 0.1 M NaOHの100 μLをチップの積み込み井戸に注入して、チップを1回洗います。追い出された液体を反対側の井戸から取り除きます。RTで1分間インキュベートします。
    4. チップの積み込み井戸に100μLのヌクレルスフリー水を注入して、チップを一度洗います。追い出された液体を反対側の井戸から取り除きます。
    5. チップの積み込み井戸に100μLのイソプロパノールを注入してチップを2回洗浄します。追い出された液体を反対側の井戸から取り除きます。チップに窒素を吹き付け、乾燥させます。光から遠ざけてください。
  8. サンプルの読み込みとシーケンス
    1. ステップ6.5.4から55 μLサンプルを上下にピペッティングして混合し、チップのローディングウェルにサンプルをロードします。
      注:ピペット先端と0.2 mL PCRチューブは、このステップで使用してください。
    2. チップをチップミニ遠心分離機(材料のテーブル)に置きます。
    3. アニーリングバッファとフラッシング溶液用に2つの新しい1.5 mLチューブを準備します。500 μL のアニールバッファーと 500 μL のヌクレアーゼフリー水を加えて、50% のアニーリング バッファーを準備します。アニールバッファーの500 μLと100%2-プロパノールの500 μLを加えてフラッシング溶液を調製します。
    4. 2つの新しい1.5 mLチューブを準備し、50%のアニーリングバッファーの49 μLと1 μLの発泡液(材料のテーブル)を両方のチューブに混合して発泡混合物を調作します。
    5. ピペットを100 μLに設定し、ステップ6.8.4から2つのチューブのいずれかから発泡混合物に空気をピペットで泡を作ります。120 μLの気泡を作り、目立つ目に見える気泡が見えなくなるまでピペッティングを続けます。120 μL の気泡を積み込みによく積み込みます。
      注: 目に見える気泡がないことを確認します。それ以外の場合は、最初からやり直してください。
    6. 過度の排出された液体をステップ6.8.5からピペッティングによってよくローディングに移します。気泡をピペットにしないでください。チップミニ遠心分離機で30s用のチップを遠心分離します。
    7. ステップ6.8.4から発泡混合物を含む第2のチューブを使用して、ステップ6.8.5を繰り返します。
    8. ステップ6.8.1に保持された0.2 mLチューブに50%のアニーリングバッファの55 μLを追加します。ステップ 6.8.1 のキープピペットチップを使用して、上下にピペットを使用します。55 μLのアニーリングバッファーをすべて積み込みによくロードします。指定されたチップミニ遠心分離機上の30s用チップを遠心分離します。
    9. 100 μLの洗い流し溶液をチップローディングに十分にロードし、排出された液体をよく出口から廃棄します。この読み込み手順を 1 回繰り返します。
      注:チップに気泡がある場合は、大きな気泡によって小さな気泡を排出し、溶液をフラッシュしてフラッシュします。これは、フラッシング溶液の100 μLをピペッティングし、フラッシュ溶液の下に5 μLの空気を残すことによって達成することができます。したがって、105 μLをチップにピペッティングすると、空気が小さな気泡を排出できる大きな気泡を形成し、次のフラッシング溶液によって大きな気泡を排出することができます。
    10. 50%アニーリングバッファの100 μLをチップローディングウェルにロードします。この読み込み手順を合計 3 回繰り返します。
    11. 50%のアニーリングバッファーの60 μLにシーケンシング酵素の6 μLを新しい1.5 mLチューブに加えます。上下にピペッティングしてミックスします。この混合溶液の65 μLをチップローディングウェルにロードします。発泡を避けるためにゆっくりとピペット。
    12. チップを光から遠ざけ、RTで5分間インキュベートします。
    13. インキュベーションの後、すぐにシーケンサーにチップをロードし、画面上のシーケンス実行を開始をクリックしてシーケンスを開始します。
      注:生データと品質管理ファイルの順序付けは、データ分析のために自動的に会社にアップロードされます。

Access restricted. Please log in or start a trial to view this content.

結果

この改変プロトコルに基づき、半導体シーケンシングプラットフォームは初めてPGT-Aに適用されました。切断段階の胚盤胞と胚盤胞期胚の両方からの生検について試験した。生検細胞は、DNAの分解を防ぐために、できるだけ早くWGAを受けることが示唆される。以前の研究では、異なるWGAメソッドの性能を比較し、ここで説明した方法は、100 KB20のビン...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

他のシーケンシング化学品とは異なり、ここで説明するシーケンサーは、ヌクレオチドの検出に半導体を使用します。チップ自体は、ポリメラーゼ駆動ベース組み込み17により水素イオンを検出する電子デバイスであり、プロトンプログラムの2〜4時間シーケンシング時間を可能にする。また、このチップは、他のシーケンサープロバイダーによるフローセルシーケンシング...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者は何も開示していない。

謝辞

この研究は、広西省科学技術財団の主要研究計画である中国国家自然科学財団(Ref No.81860272)である香港の一般研究基金(Ref No.14162417)の支援を受けた。AB16380219)、および中国から中国ポストドクター科学財団助成金(Ref No. 2018M630993)。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
PCR tubes, 0.2 mLAxygenPCR-02D-C
UltraPure 0.5M EDTA, pH 8.0ThermoFisher15575020
PBS, pH 7.4, Ca2+ and Mg2+ freeThermoFisher10010023
1.0 M NaOH (1.0N) solutionSIGMA-ALDRICHS2567For Melt-off solution. Molecular grade
Eppendorf LoBind Tubes, 1.5 mLFisher Scientific13-698-791
Ion Plus Fragment Library KitThermoFisher4471252
ELGA PURELAB Flex 3 Water Purification System or
Equivalent 18 MΩ water system
ThermoFisher4474524
Ion Plus Fragment Library KitThermoFisher4471252
PicoPLEX WGA Amplification bufferRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
PicoPLEX WGA Amplification enzymeRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Ion OneTouch Amplification PlateIn kit: Ion OneTouch 2 Supplies (Part No. A26367). Extended kit component in Sheet 5
Ion PI Annealing Buffer
MyOne Beads Capture Solution
Agilent 2100 Bioanalyzer instrumentAgilentG2939AA
Ion OneTouch Breaking Solution (black cap)In kit: Ion PI Hi?Q OT2 Solutions 200 (Part No. A26429). Extended kit component in Sheet 5
Dynabeads MyOne Streptavidin C1ThermoFisher65001
PicoPLEX WGA Cell extraction bufferRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-00.
PicoPLEX WGA Cell extraction enzymeRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Ion PI Chip Kit v3ThermoFisherA26771
Ion Chip Minifuge, 230 VThermoFisher4479673
Ion PI dATPThermoFisherA26772
Ion PI dCTPThermoFisherA26772
Ion PI dGTPThermoFisherA26772
Ion Plus Fragment Library KitThermoFisher4471252
Ion Plus Fragment Library KitThermoFisher4471252
ThermoQ–Temperature Dry BathTAMARHB-T2-A
NEBNext dsDNA FragmentaseNew England BiolabsM0348L
NEBNext dsDNA FragmentaseNew England BiolabsM0348L
Ion PI dTTPThermoFisherA26772
Ion OneTouch 2 InstrumentThermoFisherINS1005527ThermoFisher Catalog number: 4474778.
Ion Plus Fragment Library KitThermoFisher4471252
Ion One Touch ESThermoFisher8441-22ThermoFisher Catalog number: 4469495. Extended kit component in Sheet 5
EthanolSIGMA-ALDRICH51976This can be replaced by any brand's molecular grade absolute ethanol.
PicoPLEX WGA Extraction enzyme dilution bufferRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-01.
PicoPLEX WGA Extraction enzyme dilution bufferRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-02.
Qubit 3.0 FluorometerThermoFisherQ33216This model has been replaced by Qubit 4 Fluorometer, Catalog number: Q33226.
Qubit ds DNA HS Assay kitThermoFisherM2002-02
Qubit Assay TubesThermoFisherQ32856
Ion PI Foaming SolutionThermoFisherA26772
Index for barcoding of librariesBaseCarethis is a in-house prepared index. Users can buy commercial product from ThermoFisher Ion Xpress Barcode Adapters Kits (Cat. No. 4474517)
Ion PI Loading BufferThermoFisherA26772
Solid(TM) Buffer Kit-1X Low TE BufferThermoFisher4389764
Agencour AMPure XP KitBeckman CoulterA63880
DynaMag-2 magnet (magnetic rack)ThermoFisher12321D
Ion PI Master Mix PCR buffer
Sorvall Legend Micro 17 MicrocentrifugeMicro 1775002430
Ion Plus Fragment Library KitThermoFisher4471252
Nuclease-free waterThermoFisherAM9922This can be replaced by other brand.
PicoPLEX WGA Nuclease-free waterRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Ion OneTouch Oil bottleIon PI Hi?Q OT2 Solutions 200 (Part No. A26429). Extended kit component in Sheet 5
Ion Plus Fragment Library KitThermoFisher4471252Extended kit component in Sheet 3
double-strand DNA standardThis is a in-house prepared DNA standard for calibration of Qubit before quantification of library.
PicoPLEX WGA Preamplification bufferRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
PicoPLEX WGA Preamplification enzymeRubicon GenomicsR30050This can be replaced by SurePlex DNA Amplification System,catalog number: PR-40-415101-03.
Library Amplification Primer MixThermoFisher4471252Extended kit component in Sheet 3
Ion OneTouch Reaction FilterExtended kit component in Sheet 5
Recovery RouterExtended kit component in Sheet 5
Recovery TubesExtended kit component in Sheet 5
ISP Resuspension Solution
Ion ProtonThermoFisherDA8600This model is imported by Da An Gene Co.,LTD. of Sun Yat-Sen University from ThermoFisher and has been certified by China Food and Drug Administration for clinical application. The catalog number in ThermoFisher is 4476610.
Ion PI Hi?Q Sequencing PolymeraseThermoFisherA26772
Ion PI Sequencing Primer
server for sequencerLenovoT260
Ion PI Sphere Particles
Platinum PCR SuperMix High FidelityThermoFisher4471252
Nalgene 25mm Syringe FiltersThermoFisher724-2045Pore size: 0.45μm. Specifically for aqueous fluids.
Ion PI Hi?Q W2 SolutionThermoFisherA26772
Ion PI 1X W3 SolutionThermoFisherA26772
Ion OneTouch Wash Solution C1
The Ion PGM Hi?Q View Sequencing KitThermoFisherA30044Extended kit component in Sheet 2
Ion Plus Fragment Library KitThermoFisher4471252Extended kit component in Sheet 3
Ion PI Hi-Q Sequencing 200 Kit (1 sequencing run per initialization)ThermoFisherA26772Extended kit component in Sheet 4
Ion PI Hi?Q OT2 200 KitThermoFisherA26434Extended kit component in Sheet 5

参考文献

  1. Balaban, B., Urman, B. Effect of oocyte morphology on embryo development and implantation. Reproductive BioMedicine Online. 12 (5), 608-615 (2006).
  2. Capalbo, A., et al. Correlation between standard blastocyst morphology, euploidy and implantation: An observational study in two centers involving 956 screened blastocysts. Human Reproduction. 29 (6), 1173-1181 (2014).
  3. Magli, M. C., Gianaroli, L., Ferraretti, A. P. Chromosomal abnormalities in embryos. Molecular and Cellular Endocrinology. 183, 29-34 (2001).
  4. Trussler, J. L., Pickering, S. J., Ogilvie, C. M. Investigation of chromosomal imbalance in human embryos using comparative genomic hybridization. Reproductive BioMedicine Online. 8 (6), 701-711 (2004).
  5. Fragouli, E., et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: Scientific data and technical evaluation. Human Reproduction. 26 (2), 480-490 (2011).
  6. Calhaz-Jorge, C., et al. Assisted reproductive technology in Europe, 2013: Results generated from European registers by ESHRE. Human Reproduction. 32 (10), 1957-1973 (2017).
  7. Dyer, S., et al. International committee for monitoring assisted reproductive technologies world report: Assisted reproductive technology 2008, 2009 and 2010. Human Reproduction. 31 (7), 1588-1609 (2008).
  8. Dahdouh, E. M., Balayla, J., García-Velasco, J. A. Comprehensive chromosome screening improves embryo selection: A meta-analysis. Fertility and Sterility. 104 (6), 1503-1512 (2015).
  9. Chen, M., Wei, S., Hu, J., Quan, S. Can Comprehensive Chromosome Screening Technology Improve IVF/ICSI Outcomes? A Meta-Analysis. PloS One. 10 (10), e0140779(2015).
  10. Northrop, L. E., Treff, N. R., Levy, B., Scott, J. T. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Molecular Human Reproduction. 16 (8), 590-600 (2010).
  11. Barbash-Hazan, S., et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertility and Sterility. 92 (3), 890-896 (2009).
  12. Fragouli, E., et al. Comprehensive cytogenetic analysis of the human blastocyst stage. Fertility and Sterility. 90 (11), S36(2008).
  13. Fiorentino, F., et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertility and Sterility. 101 (5), 1375-1382 (2014).
  14. Fiorentino, F., et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Human Reproduction. 29 (12), 2802-2813 (2014).
  15. Wells, D., et al. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. Journal of Medical Genetics. 51 (8), 553-562 (2014).
  16. Quail, M. A., et al. A tale of three next generation sequencingplatforms: comparison of Ion Torrent, PacificBiosciences and Illumina MiSeq sequencers. BMC Genomics. 13 (1), 1-13 (2012).
  17. Goodwin, S., McPherson, J. D., McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics. 17 (6), 333-351 (2016).
  18. Bono, S., et al. Validation of a semiconductor next-generation sequencing-based protocol for preimplantation genetic diagnosis of reciprocal translocations. Prenatal Diagnosis. 35 (10), 938-944 (2015).
  19. Harton, G. L., et al. ESHRE PGD Consortium/Embryology Special Interest Groupbest practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Human Reproduction. 26 (1), 41-46 (2011).
  20. Liu, W. Q., et al. The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. Journal of Clinical Laboratory Analysis. 32 (2), 1-8 (2018).
  21. Zhang, X., et al. The comparison of the performance of four whole genome amplification kits on ion proton platform in copy number variation detection. Bioscience Reports. 37 (4), BSR20170252(2017).
  22. Munné, S., Grifo, J., Wells, D. Mosaicism: “survival of the fittest” versus “no embryo left behind”. Fertility and Sterility. 105 (5), 1146-1149 (2016).
  23. Del Carmen Nogales, M., et al. Type of chromosome abnormality affects embryo morphology dynamics. Fertility and Sterility. 107 (1), 229-235 (2017).
  24. Harton, G. L., et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Human Reproduction. 26 (1), 33-40 (2011).
  25. Deleye, L., et al. Shallow whole genome sequencing is well suited for the detection of chromosomal aberrations in human blastocysts. Fertility and Sterility. 104 (5), 1276-1285 (2015).
  26. Bielanska, M., Tan, S. L., Ao, A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Human Reproduction. 17 (2), Oxford, England. 413-419 (2002).
  27. Treff, N. R., et al. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertility and Sterility. 99 (5), 1377-1384 (2013).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

150 PGT A WGA

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved