このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
溶媒除去された器官の究極の3Dイメージングのような新しい、免疫染色互換組織クリアリング技術は、狂犬病ウイルス脳感染症とその複雑な細胞環境の3D可視化を可能にします。厚い、抗体標識された脳組織スライスは、画像深さを高め、共焦点レーザー走査顕微鏡による3D解析を可能にするために光学的に透明に作られています。
免疫標識による組織や臓器の感染過程の可視化は、現代の感染生物学における重要な方法である。臓器組織内の病原体の分布、栄養学、および豊富さを観察し、研究する能力は、疾患の発症と進行に関する重要なデータを提供します。従来の顕微鏡検査法を用いて、免疫標識は、パラフィン埋め込みまたは凍結サンプルから得られる薄いセクションに主に制限される。しかし、これらの薄い部分の限られた2D画像面は、感染した器官の複雑な構造および感染の細胞コンテキストに関する重要な情報の喪失につながる可能性がある。現代の多色、免疫染色互換組織クリアリング技術は、ウイルスに感染した臓器組織の大量の3D画像スタックを研究するための比較的高速かつ安価な方法を提供します。組織を有機溶媒にさらすことで、光学的に透明になります。これはサンプルの屈折率指数と一致し、最終的には光散乱の大幅な減少につながります。従って、長い自由な働く間隔の目的と組み合わせて、サイズの1 mmまでの大きいティッシュセクションは高リゾリューションの慣習的な共焦点レーザースキャン顕微鏡(CLSM)によってイメージ化することができる。ここでは、ウイルス病因、広がり、トロピズム、神経侵襲などのトピックを研究するために、感染した脳における狂犬病ウイルス分布を可視化するために、組織クリア後に深部組織イメージングを適用するプロトコルについて説明する。
従来の組織学の技術は、主に複雑な3D環境に2D洞察しか提供できない臓器組織の薄い部分に依存しています。原理的には実現可能ですが、シリアルシンセクションからの3D再構成は、取得した画像1のシリコアライメントのスライスおよびその後の両方に対して、厳しい技術的パイプラインを必要とします。さらに、マイクロトームスライス後のZボリュームのシームレスな再構成は、非重なり合う画像平面、染色バリエーション、物理的な画像登録によって引き起こされる最適でない画像登録のために、機械的および計算的なアーティファクトの両方が残る可能性があるため、重要です。例えば、マイクロトームブレードによる組織の破壊。対照的に、無傷の厚い組織サンプルの純粋な光学スライスは重なり合うイメージ平面の獲得(オーバーサンプリング)を可能にし、それによって、3D再建を促進する。これは、複雑な細胞集団(例えば、周囲のグリア細胞および免疫細胞の文脈における神経ネットワーク)における感染プロセスの分析に非常に有益である。しかしながら、厚い組織切片の固有の障害は、組織への光散乱および限られた抗体の浸透を含む。近年、これらの問題を克服するために様々な技術が開発され、最適化されています2,3,4,5,6,7,8,9,10歳,11歳,12歳,13.本質的に、標的組織は、水性2、3、4、5、6、7のいずれかの治療によって光学的に透明に変わる 、8、9または有機溶媒ベースの10、11、12、13溶液。3DISCO(溶媒クリア臓器の3Dイメージング)11、12およびその後継uDISCO(溶媒クリア臓器の究極の3Dイメージング)13の導入は、比較的高速でシンプルで安価なツールを提供しました。優秀なクリアリング機能。クリアリングプロトコルの主な構成要素は、有機溶媒テルトブタノール(TBA)、ベンジルアルコール(BA)、ベンジル安息香酸ベンゾエート(BB)、およびジフェニルエーテル(DPE)です。iDISCO(溶媒クリア臓器の免疫標識可能な3Dイメージング)14の開発と添加は、互換性のある免疫染色プロトコルであり、既存の方法に対する別の利点を構成し、抗原の深部組織標識を可能にした関心のあるだけでなく、免疫染色サンプルの長期保存。したがって、iDISCO14とuDISCO13の組み合わせは、従来のCLSMを使用して、大きな組織切片(最大1mm)における抗体標識タンパク質の高解像度イメージングを可能にします。
すべての次元で臓器の複雑な構造の保存は、脳組織のために特に重要です。ニューロンは、その神経突起に基づいて非常に多様な3D形態を有する非常に不均一な細胞サブ集団を含む(マスランド15によってレビュー)。さらに、脳は多数のコンパートメントおよびサブコンパートメントから構成され、それぞれがグリア細胞およびニューロンを含む異なる細胞細胞亜集団およびその比率で構成される(von Bartheld et al.16によるレビュー)。神経型ウイルスとして、狂犬病ウイルス(RABV、Fooks et al.17によってレビュー)は、主にニューロンに感染し、その輸送機械を使用して、感染の一次部位から中枢神経系(CNS)に軸方向に沿って移動する。ここで説明するプロトコル(図1A)は、感染した脳組織から得られる大きな一貫性のある画像スタックにおけるRABVおよびRABV感染細胞の免疫染色支援検出および可視化を可能にする。これにより、感染環境の公平な3D高解像度評価が可能になります。これは、様々な種からの脳組織に適用可能であり、固定後、またはパラホルムアルデヒド(PFA)中のサンプルの長期保存後に行うことができ、数ヶ月間染色およびクリアされたサンプルの保存および再画像化を可能にする。
RABV感染、PFA固定アーカイブ脳材料が使用された。それぞれの動物実験研究は、メクレンブルク西部ポメラニア(LALFF M-V)の農業、食品安全、漁業のための国家オフィスの責任ある動物のケア、使用、倫理委員会によって評価され、許可を得て承認を得ました。7221.3-2.1-002/11 (マウス) および 7221.3-1-068/16 (フェレット)。動物実験で使用される一般的なケアおよび方法は、承認されたガイドラインに従って行われた。
注意:このプロトコルは、PFA、メタノール(MeOH)、過酸化水素(H2 O2)、アジ化ナトリウム(NaN3)、TBA、BA、BB、およびDPEを含む様々な有毒および/または有害物質を使用しています。MeOHおよびTBAは非常に可燃性である。適切な個人用保護具(ラボコート、手袋、目の保護具)を着用し、ヒュームフードで実験を行うことで、暴露を避けてください。適切な容器に別途廃棄物を回収し、現地の規制に従って処分します。狂犬病ウイルスは、バイオセーフティレベル(BSL)-2病原体として分類され、したがって、一般的にBSL-2条件下で処理することができます。エアロゾルを生成する手順、高いウイルス濃度で作業する手順、または新しいリッサウイルスを使用する手順を含むいくつかの活動は、BSL-3分類を必要とする場合があります。暴露前予防は、動物の世話人や実験室の労働者を含むリスクの高い人員に推奨されます18,19.地方自治体の規制を参照してください。
1. 脳組織の固定と断面
2. メタノールによるサンプル前処理
注:穏やかな振動ですべてのインキュベーションステップを実行し、そうでなければ、室温で示されていない場合。サンプルを光から保護します。サンプル前処理は、MeOHおよびH2O2への曝露による抗体拡散を改善し、組織の自己蛍光を減少させる全体的な目的を果たし、それぞれ14。
3. 免疫染色
注:穏やかな振動ですべてのインキュベーションステップを実行し、そうでなければ、室温で示されていない場合。サンプルを光から保護します。微生物の増殖を防ぐために、このセクションの溶液に0.02%の最終濃度にNaN3を追加します。組織試料は、非イオン性洗剤トリトンX-100および第二性20による処理によりさらに透過化される。正常な血清は、非特異的抗体結合をブロックするために使用される。グリシンおよびヘパリンは、免疫標識の背景14を減少させるために添加される。
4. 核染色
注:穏やかな振動ですべてのインキュベーションステップを実行し、そうでなければ、室温で示されていない場合。サンプルを光から保護します。核染色が不要な場合、またはTO-PRO-3の励起波長/発光スペクトルが別の蛍光色素の励起または検出に必要な場合は、この手順をスキップします。
5. 組織クリア
注:穏やかな振動ですべてのインキュベーションステップを実行し、そうでなければ、室温で示されていない場合。サンプルを光から保護します。組織サンプルはTBAの等級シリーズで脱水される。免疫染色には水溶液が必要なため、組織の除去前にすべての染色手順を完了する必要があります。光学クリアランスと屈折率の一致は、BA、BB、およびDPEの混合物による処理によって達成される。クリアリング溶液は、抗酸化剤13としてDL−α-トコフェロールを補充する。
6. サンプル取り付け
7. 画像処理・画像処理
iDISCO14およびuDISCO13の組み合わせは高リゾリューションCLSMと結合され、脳組織および周囲の細胞文脈のRABV感染の時空間的な決断および可塑性に深い洞察を提供する。
RABVリンタンパク質(P)の免疫染色を用いて、感染した神経細胞の複雑な層をマウス脳の厚い部分で可視化することができる(図3)。その後、取得した?...
近年の組織浄化技術の復活とさらなる発展2,3,4,5,6,7,8,9,10歳,11歳,12歳,13歳,
著者は何も開示していない。
著者は、トーマス・C・メッテンライターとヴェレナ・テ・カンプが原稿を批判的に読んでくれたことに感謝しています。この研究は、メクレンブルク西部ポメラニア連邦優秀イニシアティブと欧州社会基金(ESF)グラント・コインフェクット(ESF/14-BM-A55-0002/16)およびリッサウイルスに関する内部共同研究助成金によって支援されました。フリードリヒ・ローフラー研究所(Ri-0372)。
Name | Company | Catalog Number | Comments |
Reagents | |||
Benzyl alcohol | Alfa Aesar | 41218 | Clearing reagent |
Benzyl benzoate | Sigma-Aldrich | BB6630-500ML | Clearing reagent |
Dimethyl sulfoxide | Carl Roth | 4720.2 | Various buffers |
Diphenyl ether | Sigma-Aldrich | 240834-100G | Clearing reagent |
DL-α-Tocopherol | Alfa Aesar | A17039 | Antioxidant |
Donkey serum | Bio-Rad | C06SBZ | Blocking reagent |
Glycine | Carl Roth | 3908.2 | Background reduction |
Goat serum | Merck | S26-100ML | Blocking reagent |
Heparin sodium salt | Carl Roth | 7692.1 | Background reduction |
Hydrogen peroxide solution (30 %) | Carl Roth | 8070.2 | Sample bleaching |
Methanol | Carl Roth | 4627.4 | Sample pretreatment |
Paraformaldehyde | Carl Roth | 0335.3 | Crystalline powder to make fixative solution |
Sodium azide | Carl Roth | K305.1 | Prevention of microbial growth in stock solutions |
tert-Butanol | Alfa Aesar | 33278 | Sample dehydration for tissue clearing |
TO-PRO-3 | Thermo Fisher | T3605 | Nucleic acid stain |
Triton X-100 | Carl Roth | 3051.2 | Detergent |
Tween 20 | AppliChem | A4974,0500 | Detergent |
Miscellaneous | |||
5 mL reaction tubes | Eppendorf | 0030119401 | Sample tubes |
Coverslip, circular (diameter: 22 mm) | Marienfeld | 0111620 | Part of imaging chamber |
Coverslip, circular (diameter: 30 mm) | Marienfeld | 0111700 | Part of imaging chamber |
Hypodermic needle (27 G x ¾” [0.40 mm x 20 mm]) | B. Braun | 4657705 | Filling of the imaging chamber with clearing solution |
RTV-1 silicone rubber | Wacker | Elastosil E43 | Adhesive for the assembly of the imaging chamber |
Ultimaker CPE 2.85 mm transparent | Ultimaker | 8718836374869 | Copolyester filament for 3D printer to print parts of the imaging chamber |
Technical equipment and software | |||
3D printer | Ultimaker | Ultimaker 2+ | Printing of imaging chamber |
Automated water immersion system | Leica | 15640019 | Software-controlled water pump |
Benchtop orbital shaker | Elmi | DOS-20M | Sample incubation at room temperature (~ 150 rpm) |
Benchtop orbital shaker, heated | New Brunswick Scientific | G24 Environmental Shaker | Sample incubation at 37 °C (~ 150 rpm) |
Confocal laser scanning microscope | Leica | DMI 6000 TCS SP5 | Inverted confocal microscope for sample imaging |
Fiji | NIH (ImageJ) | open source software (v1.52h) | Image processing package based on ImageJ |
Long working distance water immersion objective | Leica | 15506360 | HC PL APO 40x/1.10 W motCORR CS2 |
Vibratome | Leica | VT1200S | Sample slicing |
Workstation | Dell | Precision 7920 | CPU: Intel Xeon Gold 5118 GPU: Nvidia Quadro P5000 RAM: 128 GB 2666 MHz DDR4 SSD: 2 TB |
Primary antibodies | |||
Goat anti-RABV N | Friedrich-Loeffler-Institut | Monospecific polyclonal goat anti-RABV N serum, generated by goat immunization with baculovirus-expressed and His-tag-purified RABV nucleoprotein N Dilution: 1:400 | |
Rabbit anti-GFAP | Dako | Z0334 | Polyclonal antibody (RRID:AB_10013382) Dilution: 1:100 |
Rabbit anti-MAP2 | Abcam | ab32454 | Polyclonal antibody (RRID:AB_776174) Dilution: 1:250 |
Rabbit anti-RABV P 160-5 | Friedrich-Loeffler-Institut | Monospecific polyclonal rabbit anti-RABV P serum, generated by rabbit immunization with baculovirus-expressed and His-tag-purified RABV phosphoprotein P (see reference 23: Orbanz et al., 2010) Dilution: 1:1,000 | |
Secondary antibodies | |||
Donkey anti-goat IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Donkey anti-mouse IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Donkey anti-rabbit IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Goat anti-mouse IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Goat anti-rabbit IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved